The Spread of the Unicyclic Graphs

Shu Jinlong* and Wu Yarong†
Department of Mathematics, East China Normal University
Shanghai, 200062, People’s Republic of China

Abstract

Let G be a simple connected graph with n vertices and n edges which we call an unicyclic graph. In this paper, we first investigate the least eigenvalue $\lambda_n(G)$, then we present two sharp bounds of the spread $s(G)$ of G.

AMS classification: 05C50, 05C35
Key words: Unicyclic graph; Spread; Largest eigenvalue; Least eigenvalue.

1. Introduction

In this paper, all graphs are finite undirected connected graphs without loops and multiple edges. Let

$$\mathcal{A}_{n,n} = \{G | G \text{ is a connected graph with } n \text{ vertices and } n \text{ edges, } n \geq 3\}.$$

Obviously, there is an unique cycle in $G \in \mathcal{A}_{n,n}$. So, we call G is an unicyclic graph and, $\mathcal{A}_{n,n}$ is the set of unicyclic graphs.

By eigenvalues of a graph G we mean eigenvalues of its adjacency matrix A. The spectral spread (briefly the spread) $s(G)$ of G is the spread $s(A)$ of its adjacency matrix A, i.e. $s(A) = s(G) = \lambda_1(G) - \lambda_n(G)$, where $\lambda_1(G)$ and $\lambda_n(G)$ are the largest and least eigenvalues of G, respectively. For definition and properties of the spread of matrix, one can consult [7].

As $s(G)$ is the diameter of the spectrum of G, it is very necessary to investigate the spread $s(G)$. For any connected graph T with n vertices and $n - 1$ edges (i.e. T is a tree), since $\lambda_1(P_n) \leq \lambda_1(T) \leq \lambda_1(K_{1,n-1})$ [9] and $P_n, T, K_{1,n-1}$ are bipartite graphs, we can get that $s(P_n) \leq s(T) \leq s(K_{1,n-1})$. In this paper, we study the spread of a connected graph G with n vertices and n edges (i.e. G is an unicyclic

*E-mail Address: jlshu@math.ecnu.edu.cn
†E-mail Address: yarongwu1@yahoo.com.cn
graph). There is a considerable literature on the spread of the graphs with all kinds of propositions ([2] [3] [6] [8] [13]). Our results are due to the conjecture in [3].

Conjecture [3] Of all the graphs with \(n \) vertices and \(e \) edges, suppose \(G \) is one with maximum spread. If \(e \leq \left\lfloor \frac{n^2}{4} \right\rfloor \), then \(G \) must be bipartite.

We consider the spread \(s(G) \) of the unicyclic graphs by proving the lower bound of the least eigenvalue. We get that

\[
s(C_n) \leq s(G) \leq s(S^3_n),
\]

when \(G \in A_{n,n} - \{ S^5_6 \} \) and \(n \geq 6 \). Moreover, the left equality holds if and only if \(G \cong C_n \); the right equality holds if and only if \(G \cong S^3_n \), where \(S^k_n \) denote the graph which is obtained by joining one vertex of the cycle \(C_k \) to \((n-k)\) isolated vertices.

Obviously, the number of the edges of \(S^3_n \) is \(m = n \leq \left\lfloor \frac{n^2}{4} \right\rfloor \), but \(S^3_n \) is not a bipartite graph. This disproves the conjecture when \(G \) is restricted to be connected.

The terminology not defined here can be found in [1].

2. The Least Eigenvalues of \(G \)

In this section, we will investigate the least eigenvalue \(\lambda_n(G) \) of \(G \). We first present some basic lemmas in the following.

Lemma 2.1 [9] Let \(G \) be a tree with \(n \) vertices. Then

\[
2\cos \frac{\pi}{n+1} \leq \lambda_1(G) \leq \sqrt{n-1}.
\]

The left-hand equality holds if and only if \(G \cong P_n \), the right-hand equality holds if and only if \(G \cong K_{1,n-1} \).

Lemma 2.2 [5] Let \(G \) be a simple connected graph with \(n \) vertices. Then there exists a bipartite spanning subgraph \(G' \) of \(G \), satisfying \(\lambda_n(G) \geq \lambda_n(G') \).

Lemma 2.3 [12] Let \(G \) be a simple graph, \(v \in V(G) \), \(C(v) \) be the set of all circuits including \(v \). Then

\[
P(G) = \lambda P(G - v) - \sum_{u \sim v} P(G - v - u) - 2 \sum_{z \in C(v)} P(G - V(z)).
\]

The following lemma has been given in [14]. Now, we give a new proof as below.

Lemma 2.4 [14] Let \(\lambda_n(G) \) be the least eigenvalues of \(G \), \(G \in A_{n,n} \) and \(n \geq 12 \). Then

\[
\lambda_n(S^3_n) < \lambda_n(S^4_n).
\]
Fig.1.

Proof. By Lemma 2.3, we can get that
\[
P(S_3^n, \lambda) = P(P_2, \lambda)\lambda^{n-2} - (n - 3)P(P_2, \lambda)\lambda^{n-4} - 2\lambda^{n-2} - 2\lambda^{n-3} \\
= (\lambda^2 - 1)\lambda^{n-2} - (n - 3)(\lambda^2 - 1)\lambda^{n-4} - 2\lambda^{n-2} - 2\lambda^{n-3} \\
= \lambda^{n-4}(\lambda + 1)(\lambda^3 - \lambda^2 + (1 - n)\lambda + n - 3),
\]
\[
P(S_4^4, \lambda) = P(P_3, \lambda)\lambda^{n-3} - (n - 4)P(P_3, \lambda)\lambda^{n-5} - 2P(P_2, \lambda)\lambda^{n-4} - 2\lambda^{n-4} \\
= \lambda^{n-4}(\lambda^4 - n\lambda^2 + 2n - 8).
\]

By solving the equality \(\lambda^4 - n\lambda^2 + 2n - 8 = 0 \), we can get
\[
\lambda_{n}(S_3^4) = -\sqrt{n + \sqrt{n^2 - 8n + 32}}.
\]

Let \(f(\lambda) = \lambda^3 - \lambda^2 + (1 - n)\lambda + n - 3 \), we have
\[
f(-\sqrt{n - 1}) = -2 < 0, \quad f\left(-\sqrt{n - \frac{3}{2}}\right) = -\frac{3}{2} + 1\sqrt{n - \frac{3}{2}} > 0; \\
f(0) = n - 3 > 0, \quad f(1) = -2 < 0; \\
f(\sqrt{n - 1}) = -2 < 0, \quad f(\sqrt{n}) = \sqrt{n - 3} > 0,
\]
for \(n \geq 11 \). Thus, the cubic polynomial \(f(\lambda) \) has three real roots lying in the intervals \((-\sqrt{n - 1}, -\sqrt{n - \frac{3}{2}}), (0, 1) \) and \((\sqrt{n - 1}, \sqrt{n})\). That implies
\[
-\sqrt{n - 1} < \lambda_{n}(S_3^4) < -\sqrt{n - \frac{3}{2}}.
\]

It is evident that
\[
-\sqrt{n - \frac{3}{2}} < -\sqrt{n + \sqrt{n^2 - 8n + 32}}.
\]
when \(n \geq 12 \). Thus
\[
\lambda_{n}(S_3^4) < -\sqrt{n - \frac{3}{2}} < -\sqrt{n + \sqrt{n^2 - 8n + 32}} = \lambda_{n}(S_4^4),
\]
when \(n \geq 12 \).
That completes the proof. \(\square \)

By Lemma 2.4, we obtain two corollaries.

Corollary 2.5 Let \(\lambda_n(G) \) be the least eigenvalues of \(G \in \mathcal{A}_{n,n} \). Then

1. \(-\sqrt{n-1} < \lambda_n(S_n^3) < -\sqrt{n-\frac{3}{2}} \) when \(n \geq 11 \);
2. \(-\sqrt{n-1} < \lambda_n(S_n^3) \leq -\sqrt{n-2} \) when \(3 \leq n \leq 10 \).

Proof. By the proof of Lemma 2.4 and \(f(-\sqrt{n-2}) = -1 + \sqrt{n-2} \geq 0 \) when \(n \geq 3 \), we can easy to get the result. \(\square \)

Corollary 2.6 Let \(\lambda_1(G) \) be the largest eigenvalues of \(G \in \mathcal{A}_{n,n} \). Then

1. \(\sqrt{n-1} < \lambda_1(S_n^3) \leq \sqrt{n} \) when \(n \geq 9 \);
2. \(\sqrt{n-1} < \lambda_1(S_n^3) \leq \sqrt{n+1} \) when \(3 \leq n \leq 8 \).

Proof. From the proof of Lemma 2.4 and, \(f(\sqrt{n+1}) = 2\sqrt{n+1} - 4 \geq 0 \) when \(n \leq 3 \), we obtain this corollary. \(\square \)

Lemma 2.7 [11] Let \(G \) be a tree with \(n \) vertices, \(n \geq 4 \) and \(G \not\sim K_{1,n-1} \). Then

\[
\lambda_1(G) \leq \sqrt{\frac{1}{2}(n-1 + \sqrt{n^2 - 6n + 13})}.
\]

The equality holds if and only if \(G \cong T_1 \) (in Fig.2).

Lemma 2.8 [11] Let \(G \) be a tree with \(n \) vertices and \(G \not\sim K_{1,n-1}, G \not\sim T_1 \) (in Fig.2.). Then

\[
\lambda_1(G) \leq \sqrt{\frac{1}{2}(n-1 + \sqrt{n^2 - 10n + 33})}.
\]

The equality holds if and only if \(G \cong T_2 \) (in Fig.2).

![Fig.2.](image)

We denote the girth of \(G \) by \(g(G) \) or \(g \).

Lemma 2.9 [4] Let \(G \) be an unicyclic graph with girth \(g(G) = k \). Then

\[
\lambda_1(G) \leq \lambda_1(S_n^k), \text{ and } \lambda_1(S_n^{k+1}) < \lambda_1(S_n^k),
\]

where \(3 \leq k \leq n-1 \). Moreover, \(\lambda_1(G) = \lambda_1(S_n^k) \) if and only if \(G \cong S_n^k \).
We begin to consider the bound on the least eigenvalue $\lambda_n(G)$ of an unicyclic graph G and give a new proof of the following result.

Theorem 2.10 [14] For an arbitrary graph $G \in \mathcal{A}_{n,n}$ and $G \not\cong S_n^3$. Then

$$\lambda_n(S_n^4) \leq \lambda_n(G),$$

the equality holds if and only if $G \cong S_n^4$.

Proof. If $g = 3$ and $G \not\cong S_n^3$. By Lemma 2.2, we get that there exists a bipartite spanning subgraph G' of G, satisfying $\lambda_n(G) \geq \lambda_n(G')$. So, G' is a tree or a forest with n vertices. Since $G \not\cong S_n^3$, then $G' \not\cong K_{1,n-1}$. By Lemma 2.7, it is easy to get that if $n \geq 6$,

$$\lambda_n(G) \geq \lambda_n(G') = -\lambda_1(G') \geq -\frac{1}{2}(n-1 + \sqrt{n^2 - 6n + 13}) \geq -\frac{1}{2}(n + \sqrt{n^2 - 8n + 32}) = \lambda_n(S_n^4).$$

If $n = 4$, there is not unicyclic graph satisfying $G \not\cong S_n^3$ and $g = 3$. If $n = 5$, there are two unicyclic graphs with $G \not\cong S_n^3$ and $g = 3$. It is easy to get that λ_n of them greater then $\lambda_n(S_n^4)$.

If $g \geq 4$, we distinguish the following two cases.

Case 1. $g \equiv 0 \pmod{2}$.

By Lemma 2.9,

$$\lambda_1(G) \leq \lambda_1(S_n^g) \leq \lambda_1(S_n^{g-1}) \leq \cdots \leq \lambda_1(S_n^4).$$

Since the girth g is an even number, G and S_n^4 are bipartite graphs. Then $-\lambda_n(G) = \lambda_1(G)$ and $-\lambda_n(S_n^4) = \lambda_1(S_n^4)$. So $\lambda_n(G) \geq \lambda_n(S_n^4)$.

Case 2. $g \equiv 1 \pmod{2}$.

Since $|\lambda_n(G)| < \lambda_1(G)$ and $\lambda_n(G) < 0$, then $\lambda_n(G) > -\lambda_1(G)$. By Lemma 2.9, we have that $\lambda_n(G) > -\lambda_1(G) \geq -\lambda_1(S_n^g) \geq \cdots \geq -\lambda_1(S_n^4) = \lambda_n(S_n^4)$.

Obviously, from Lemma 2.7 and Lemma 2.9, the equality holds if and only if $G \cong S_n^4$.

This completes the proof. \[\square\]

By Theorem 2.10 and Lemma 2.4, it is easy to get the following corollary.

Corollary 2.11 Let G be an unicyclic graph with $n \geq 12$ vertices. Then

$$\lambda_n(S_n^3) \leq \lambda_n(G).$$
In the following theorem, we concentrate to determine $\lambda_n(G)$ of the unicyclic graph G with $g = 3$ and $n \leq 11$.

Theorem 2.12 Let G be an unicyclic graph with $g = 3$, n vertices and $6 \leq n \leq 11$. Then

$$\lambda_n(S_3^n) \leq \lambda_n(G).$$

Proof. By Lemma 2.2, there exists a bipartite spanning subgraph G' satisfying: $\lambda_n(G) \geq \lambda_n(G')$. Since $g = 3$, G' is a tree or a forest with n vertices.

If G' is a forest, there exists a component T' (i.e. a tree) with $n' \leq n - 1$ vertices and $\lambda_{n'}(T') = \lambda_n(G')$. By Lemma 2.1 and Corollary 2.5, we have

$$\lambda_n(G) \geq \lambda_n(G') = \lambda_{n'}(T') = -\sqrt{n' - 1} \geq -\sqrt{n - 2} \geq \lambda_n(S_3^n).$$

If G' is not a forest but a tree, we suppose $G \not\sim S_3^n$, $G \not\sim H$ and $G \not\sim H'$ (in Fig. 2). Then $G' \not\sim K_{1,n-1}$ and $G' \not\sim T_1$ (in Fig. 2). By Lemma 2.8 and Corollary 2.5, we can get that, for $n \geq 6$,

$$\lambda_n(G) \geq \lambda_n(G') = -\sqrt{\frac{1}{2}(n - 1 + \sqrt{n^2 - 10n + 33})} \geq -\sqrt{n - 2} \geq \lambda_n(S_3^n).$$

If $G \cong S_3^n$ or $G \cong H$ or $G \cong H'$ (in Fig. 2), we present the least eigenvalues of G with vertices $6 \leq n \leq 11$ in the following table.

<table>
<thead>
<tr>
<th>n</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_n(S_3^n)$</td>
<td>-2.0861</td>
<td>-2.3234</td>
<td>-2.5366</td>
<td>-2.7321</td>
<td>-2.9136</td>
<td>-3.0839</td>
</tr>
<tr>
<td>$\lambda_n(H)$</td>
<td>-1.9202</td>
<td>-2.1542</td>
<td>-2.3713</td>
<td>-2.5726</td>
<td>-2.7603</td>
<td>-2.9365</td>
</tr>
<tr>
<td>$\lambda_n(H')$</td>
<td>-1.8723</td>
<td>-2.1220</td>
<td>-2.3489</td>
<td>-2.5562</td>
<td>-2.7478</td>
<td>-2.9267</td>
</tr>
</tbody>
</table>

From this table, we get that $\lambda_n(H) > \lambda_n(S_3^n)$ and $\lambda_n(H') > \lambda_n(S_3^n)$.

This completes the proof. □

3. The Bounds of the Spread $s(G)$

In this section, we discuss the upper bound and the lower bound of the spread $s(G)$ of the unicyclic graph. We first state some lemmas about $\lambda_1(G)$ and $s(G)$.
Lemma 3.1 [4] Let G be a simple graph with n vertices and, $\lambda_1(G)$ be the largest eigenvalue of an unicyclic graph. Then

$$\lambda_1(C_n) \leq \lambda_1(G) \leq \lambda_1(S_n^3).$$

The left-hand equality holds if $G \cong C_n$, the right-hand equality holds if $G \cong S_n^3$.

Lemma 3.2 [3] If H is an induced subgraph of G. Then $s(G) \geq s(H)$ with strict inequality if G is connected and H is a proper induced subgraph of G.

Lemma 3.3 [3] If H is a bipartite subgraph of a graph G, then $s(G) \geq s(H)$.

Lemma 3.4 [10] There are exactly 30 minimal connected graphs with respect to the property of having the spread greater than 4 and they are displayed in Fig.3.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig3.png}
\caption{Fig.3.}
\end{figure}

Now, we give a sharp upper bounds on $s(G)$ of the unicyclic graphs.

Theorem 3.5 Let G be an unicyclic graph with n vertices and the grith g.

1. If $n \geq 6$, then $s(G) \leq s(S_n^3)$, the equality holds if and only if $G \cong S_n^3$.
2. If $n = 4$ or 5, then $s(G) \leq s(S_n^4)$, the equality holds if and only if $G \cong S_n^4$.

Proof. (1) If $n \geq 12$, by Corollary 2.11 and Lemma 3.1, we obtain

$$s(G) = \lambda_1(G) - \lambda_n(G) \leq \lambda_1(S_n^3) - \lambda_n(S_n^3) = s(S_n^3).$$

If $6 \leq n \leq 11$ and $g = 3$, by Theorem 2.12 and Lemma 3.1, we have

$$s(G) \leq \lambda_1(S_n^3) - \lambda_n(S_n^3) = s(S_n^3).$$

If $6 \leq n \leq 11$ and $g \geq 4$, then $G \not\cong S_n^3$. By Lemma 2.9 and Theorem 2.10, we get

$$s(G) \leq \lambda_1(S_n^4) - \lambda_n(S_n^4) = s(S_n^4).$$

7
From the following table, it is clear that \(s(S_n^4) < s(S_n^3) \). So \(s(G) < s(S_n^3) \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(s(S_n^4))</th>
<th>(s(S_n^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4.6002</td>
<td>4.5765</td>
</tr>
<tr>
<td>7</td>
<td>5.0047</td>
<td>4.8990</td>
</tr>
<tr>
<td>8</td>
<td>5.8670</td>
<td>5.2263</td>
</tr>
<tr>
<td>9</td>
<td>6.0647</td>
<td>5.5503</td>
</tr>
<tr>
<td>10</td>
<td>6.1745</td>
<td>5.5503</td>
</tr>
<tr>
<td>11</td>
<td>6.3810</td>
<td>5.8670</td>
</tr>
</tbody>
</table>

It is evident that the equality holds if and only if \(G \cong S_n^3 \).

(2) We present all the unicyclic graphs which has \(n = 5 \) vertices and their spread \(s(G) \) in Fig.4. So \(s(G) \leq s(S_5^4) \).

\[
\text{Fig.4.}
\]

Further, it is easy to get \(s(S_4^1) = s(C_4) = 4, s(S_4^2) = 3.6513 \). Thus \(s(S_4^1) > s(S_4^2) \).

This completes the proof. \(\square \)

Finally, we show a sharp lower bound on \(s(G) \) of an unicyclic graph as below.

Theorem 3.6. Let \(G \) be an unicyclic graph with \(n \) vertices. If \(n \geq 5 \), \(G \not\cong S_6^5 \), then \(s(G) \geq s(C_n) \). The equality holds if and only if \(G \cong C_n \).

Proof. As \(G \) is an unicyclic graph, without loss the generality, we suppose that the girth \(g \) of \(G \) is less than \(n \). So \(G \not\cong C_n \). Otherwise, \(G \cong C_n \) and \(s(G) = s(C_n) \). Clearly, the result is true.

If \(n=5 \), then \(s(G) \geq s(C_5) \approx 3.6180 \) by determining the spread of all unicyclic graph with 5 vertices (in Fig. 4). The equality holds iff \(G \cong C_5 \).

Case 1. \(g \equiv 0 \pmod{2} \). Obviously, \(C_g \) is a bipartite subgraph of \(G \). By Lemma 3.3, \(s(G) > s(C_g) = 4 \geq s(C_n) \).

Case 2. \(g \equiv 1 \pmod{2} \). We consider three subcases: (a) \(g \geq 7 \); (b) \(g = 5 \); (c) \(g = 3 \).

- **Subcase a.** As \(g \geq 7 \), the unicyclic graph \(G \) has the induced subgraph \(G_{20} \) or \(G_{29} \) which are showed in Lemma 3.4. By Lemma 3.2 and Lemma 3.4, we obtained \(s(G) \geq \min\{s(G_{20}), s(G_{29})\} > 4 \geq s(C_n) \).

- **Subcase b.** If \(g = 5 \) and \(n \geq 7 \), the unicyclic graph \(G \) has the induced subgraphs \(G_{15}, G_{16}, G_{18} \) and \(G_{23} \) which are showed in Lemma 3.4. By Lemma 3.4 and Lemma 3.2, it is easy to get \(s(G) \geq \min\{s(G_{15}), s(G_{16}), s(G_{18}), s(G_{23})\} > 4 \geq s(C_n) \).

- If \(g = 5 \) and \(n = 6 \), then there exists no graph nonisomophic \(S_6^5 \).

- **Subcase c.** As \(g = 3 \) and \(n \geq 6 \), the unicyclic graph \(G \) has the induced subgraphs \(G_5, G_7, G_8, G_{10}, \text{ or } G_{12} \) in Lemma 3.4. By Lemma 3.4 and Lemma 3.2, we can get that

\[
\min\{s(G_5), s(G_7), s(G_8), s(G_{10}), s(G_{12})\} > 4 \geq s(C_n).
\]
It is evident that the equality holds if and only if $G \cong C_n$.

Now, this completes the proof.

Remark :

1. If $n=6$. Since $\lambda_1(S_6^5) \approx 2.114$, $\lambda_n(S_6^5) \approx -1.860$, $s(S_6^5) \approx 3.974 < 4 = s(C_6)$. Hence, $s(G) \geq s(S_6^5)$ and the equality holds iff $G \cong S_6^5$.

2. If $n=4$, then $s(G) \geq s(S_4^3) \approx 3.6513$. The equality holds iff $G \cong S_4^3$.

3. If $n=3$, then $s(G)=s(C_3)=3$. The equality holds iff $G \cong C_3$.

Acknowledgements

This paper was supported by National Natural Science Foundation of China (NO. 19671029 & 10271048) and Shanghai Priority Academic Discipline.

References

