BOSONIC REPRESENTATIONS OF THE LIE ALGEBRAS

\(\mathcal{W}_{1+\infty} \) AND \(\mathcal{W}_{1+\infty}(gl_N) \)

Dong Liu and Naihong Hu*
Department of Mathematics, East China Normal University
Shanghai, 200062, P.R. China

ABSTRACT

In the paper, we construct bosonic negative-energy representations of the central extension of the Lie algebra of differential operators on the circle, the Lie algebra \(\mathcal{W}_{1+\infty} \), as well as of the Lie algebra \(\mathcal{W}_{1+\infty}(gl_N) \). In particular, when restricted to the Virasoro subalgebra of the Lie algebra \(\mathcal{W}_{1+\infty} \), we obtain a bosonic realization of the Virasoro algebra with central charge \(c = 2 \) and negative-energies, which is completely reducible.

Keywords: Bosonic representation, Virasoro algebra, differential operator, negative-energy

1. INTRODUCTION

Spinor representations for the affine Kac-Moody Lie algebras were first developed by Frenkel [F] and Kac-Peterson [KP] independently. The idea is to use a Clifford algebra with infinitely many generators to construct certain quadratic elements, which, together with the identity element, span an orthogonal affine Kac-Moody Lie algebra. Thereafter, Feingold-Frenkel [FF] constructed the so-called fermionic or bosonic representations for all classical affine Kac-Moody Lie algebras by using Clifford or Weyl algebras with infinitely many generators. Recently, Gao [G2] constructed fermionic and bosonic representations for the extended affine Lie algebra \(\widehat{gl_N}(C_q) \).

As we know, the Lie algebra \(\widehat{D}^- \), as the universal central extension of the Lie algebra of differential operators on the circle (see [KP]), has appeared in various models of two-dimensional quantum field theory and integrable systems (see the references in [FKRW], [KR]). A systematic study of the quasifinite highest weight representation theory of the Lie algebra \(\widehat{D}^- \), which is often referred to as \(\mathcal{W}_{1+\infty} \) algebra by physicists, has been investigated by Kac et al (see [KR], [FKRW], etc.). Motivated by [G2], this paper is devoted to constructing bosonic representations of the Lie algebra \(\mathcal{W}_{1+\infty} \) and of the Lie algebra \(\mathcal{W}_{1+\infty}(gl_N) \). In particular, we obtain a bosonic realization of the Virasoro algebra with central charge \(c = 2 \) and negative-energies when restricted to the Virasoro subalgebra of the Lie algebra \(\mathcal{W}_{1+\infty} \), which differs from the typical one given in the literature (for instance, see [F2], or [KRa]).

Throughout this paper, \(\mathbb{Z}, \mathbb{N} \) and \(\mathbb{C} \) denote the set of integers, non-negative integers and complex numbers, respectively.

* Corresponding author. Email: nhhu@math.ecnu.edu.cn
Lemma 1.1 ([KR]). Any non-trivial 2-cocycle on \mathcal{D}^- is equivalent to ϕ:

$$
\phi(t^{m_1}D^{n_1}, t^{m_2}D^{n_2}) = \begin{cases}
0, & \text{if } m_1 = 0, \\
(-1)^{n_1} \delta_{m_1+m_2,0} \frac{1}{2} \sum_{i=1}^{m_1} (m_1 - i)^{n_1} i^{n_2}, & \text{if } m_1 > 0, \\
(-1)^{n_1} \delta_{m_1+m_2,0} \frac{1}{2} \sum_{i=1}^{m_1} (m_1 - i)^{n_1} i^{n_2}, & \text{if } m_1 < 0.
\end{cases}
$$

Let $\mathcal{W}_{1,+\infty}$ denote the universal (one-dimensional) central extension $\widehat{\mathcal{D}^-}$ of the Lie algebra \mathcal{D}^- by the above 2-cocycle ϕ. In particular, $\text{Vir} = \text{Span}_\mathbb{C}\{L_m = t^m D, c \mid m \in \mathbb{Z}\}$ is the Virasoro subalgebra of $\mathcal{W}_{1,+\infty}$, where its Lie bracket is given as follows (since $\sum_{i=1}^{m} (m - i)i = \frac{1}{6} (m - 1) m (m + 1)$ for $m > 0$)

$$
[L_m, L_n] = (n - m) L_{m+n} + \frac{1}{12} (m - 1) m (m + 1) \delta_{m+n,0} c, \\
c, L_m] = 0.
$$

2. BOSONIC REPRESENTATION OF $\mathcal{W}_{1,+\infty}$

Define S to be the unital associative algebra with infinitely many generators: $a(n), a^*(n) \ (n \in \mathbb{Z})$ with relations

$$
[a(n), a(m)] = [a^*(n), a^*(m)] = 0,
$$

$$
[a(n), a^*(m)] = -\delta_{n+m,0}.
$$

We define the normal ordering as follows.

$$
a(n)a^*(m) := \begin{cases}
a(n)a^*(m), & n \leq m, \\
a^*(m)a(n), & n > m,
\end{cases}
$$

for $n, m \in \mathbb{Z}$. Set

$$
\theta(n) = \begin{cases}
1, & n > 0, \\
0, & n \leq 0.
\end{cases}
$$
Then
\[a(n) a^*(m) =: a(n) a^*(m) = -\delta_{n+m,0} \theta(n-m), \] (2.5)
and
\[[a(m) a^*(n), a(p)] = \delta_{n+p,0} a(m), \]
\[[a(m) a^*(n), a^*(p)] = -\delta_{m+p,0} a^*(n), \] (2.6)
for \(m, n, p \in \mathbb{Z}. \)

Let \(\mathcal{S}^+ \) be the subalgebra generated by \(a(n), a^*(0), a^*(m) \) for \(n, m > 0 \). Let \(\mathcal{S}^- \) be the subalgebra generated by \(a(0), a(n), a^*(m) \) for \(n, m < 0 \). Those generators in \(\mathcal{S}^+ \) are called annihilation operators while those in \(\mathcal{S}^- \) are called creation operators. Let \(V \) be a simple \(\mathcal{S} \)-module containing an element \(v_0 \), called a “vacuum vector”, and satisfying
\[\mathcal{S}^+ v_0 = 0. \] (2.7)

So all annihilation operators kill \(v_0 \) and
\[V = \mathcal{S}^- v_0. \] (2.8)

Now we may construct a class of bosons on \(V \). For any \(m \in \mathbb{Z}, n \in \mathbb{N} \), set
\[f(m, n) = \sum_{i \in \mathbb{Z}} (-i)^n : a(m - i) a^*(i) :. \] (2.9)

Although \(f(m, n) \) are infinite sums, they are well-defined as operators on \(V \). Indeed, for any vector \(v \in V = \mathcal{S}^- v_0 \), only finitely many terms in (2.9) can make a non-zero contribution to \(f(m, n)v \).

Lemma 2.1. For \(m, p, s \in \mathbb{Z}, n \in \mathbb{N} \),
\[[f(m, n), a(p)] = p^n a(m+p), \] (2.10)
\[[f(m, n), a^*(p)] = -(-m-p)^n a^*(m+p), \] (2.11)
\[[f(m, n), a(p)a^*(s)] = p^n a(m+p)a^*(s) - (-m-s)^n a(p)a^*(m+s). \] (2.12)

Proof. Since
\[[f(m, n), a(p)] = \sum_{i \in \mathbb{Z}} (-i)^n [a(m-i)a^*(i), a(p)] \]
\[= \sum_{i \in \mathbb{Z}} (-i)^n [a(m-i)a^*(i), a(p)] \]
\[= p^n a(m+p), \]
(2.10) is true. The proof of (2.11) is similar, and (2.12) follows from (2.10) and (2.11). \(\Box \)

Proposition 2.2. For \(m_1, m_2 \in \mathbb{Z}, n_1, n_2 \in \mathbb{N} \), we have
\[[f(m_1, n_1), f(m_2, n_2)] = \sum_{i=0}^{n_1} \binom{n_1}{i} m_2^i f(m_1 + m_2, n_1 + n_2 - i) \]
\[- \sum_{j=0}^{n_2} \binom{n_2}{j} m_1^j f(m_1 + m_2, n_1 + n_2 - j) \]
\[+ \varphi(f(m_1, n_1), f(m_2, n_2)), \]
where \(\varphi \) is given by

\[
\varphi(f(m_1, n_1), f(m_2, n_2)) = \begin{cases}
0, & \text{if } m_1 = 0, \\
(-1)^{n_1+1}\delta_{m_1+m_2,0}\sum_{i=1}^{m_1}(m_1-i)^{n_1}i^{n_2}, & \text{if } m_1 > 0, \\
(-1)^{n_1}\delta_{m_1+m_2,0}\sum_{i=m_1}^{m_1}(m_1-i)^{n_1}i^{n_2}, & \text{if } m_1 < 0.
\end{cases}
\]

Proof. By Lemma 2.1, we have

\[
[f(m_1, n_1), f(m_2, n_2)] = [f(m_1, n_1), \sum_{i \in \mathbb{Z}} (-t)^{n_2} : a(m_2-t)a^*(t)] \\
= [f(m_1, n_1), \sum_{i \in \mathbb{Z}} (-t)^{n_2}a(m_2-t)a^*(t)] \\
= \sum_{i \in \mathbb{Z}} (-t)^{n_2}(m_2-t)^{n_1}a(m_1+m_2-t)a^*(t) - \sum_{i \in \mathbb{Z}} (-m_1-t)^{n_1}(-t)^{n_2}a(m_2-t)a^*(m_1+t) \\
= \sum_{i \in \mathbb{Z}} (-t)^{n_2}(m_2-t)^{n_1}a(m_1+m_2-t)a^*(t) - \sum_{i \in \mathbb{Z}} (-m_1-t)^{n_1}(-t)^{n_2}a(m_2-t)a^*(m_1+t) \\
- \delta_{m_1+m_2,0}\left(\sum_{i \in \mathbb{Z}} (-m_2-t)^{n_1}(-t)^{n_2}\theta(m_1+m_2-t) - \sum_{i \in \mathbb{Z}} (-m_1-t)^{n_1}(-t)^{n_2}\theta(m_2-m_1-2t)\right) \\
= \sum_{i=0}^{n_1} \binom{n_1}{i} m_1^i \sum_{i=0}^{n_2} \binom{n_2}{j} m_2^j f(m_1+m_2, n_1+n_2-i) - \sum_{j=0}^{n_2} \binom{n_2}{j} m_2^j f(m_1+m_2, n_1+n_2-j) \\
- \delta_{m_1+m_2,0}\left(\sum_{i \in \mathbb{Z}} (-m_1-t)^{n_1}(-t)^{n_2}\theta(-2t) - \sum_{i \in \mathbb{Z}} (-m_1-t)^{n_1}(-t)^{n_2}\theta(-2m_1-2t)\right) \\
= \sum_{i=0}^{n_1} \binom{n_1}{i} m_1^i \sum_{i=0}^{n_2} \binom{n_2}{j} m_2^j f(m_1+m_2, n_1+n_2-i) - \sum_{j=0}^{n_2} \binom{n_2}{j} m_2^j f(m_1+m_2, n_1+n_2-j) \\
+ \delta_{m_1+m_2,0}\sum_{i \in \mathbb{Z}} (-\theta(-2t) + \theta(-2m_1-2t)) (-m_1-t)^{n_1}(-t)^{n_2} \\
= \sum_{i=0}^{n_1} \binom{n_1}{i} m_1^i f(m_1+m_2, n_1+n_2-i) - \sum_{j=0}^{n_2} \binom{n_2}{j} m_2^j f(m_1+m_2, n_1+n_2-j) \\
+ \varphi(f(m_1, n_1), f(m_2, n_2)),
\]

where the last equality is given by

\[
\sum_{i \in \mathbb{Z}} (-\theta(-2t) + \theta(-2m_1-2t)) (-m_1-t)^{n_1}(-t)^{n_2} = \begin{cases}
0, & m_1 = 0, \\
-\sum_{i=1}^{m_1}(t-m_1)^{n_1}t^{n_2}, & m_1 > 0, \\
\sum_{i=m_1}^{m_1}(t-m_1)^{n_1}t^{n_2}, & m_1 < 0.
\end{cases}
\]

The proof is completed.

Let \(T = f(0, 0) \), then Lemma 2.1 gives

\[
[T, a(n)] = a(n), \quad [T, a^*(n)] = -a^*(n),
\]

for all \(n \in \mathbb{Z} \). For any \(v = a(n_1) \cdots a(n_s)a^*(m_1) \cdots a^*(m_l)v_0 \in V \), noting that \(Tv_0 = 0 \), one has

\[
Tv = (s-l)v.
\]
According to Proposition 2.2 and Lemma 2.1, we obtain

Theorem 2.3. \(V \) is a module for the Lie algebra \(W_{1+\infty} \) with central charge \(c = 2 \) under the action given by

\[
\pi(t^m D^n) = f(m, n), \\
\pi(c) = 2 \text{id.}
\]

for all \(m \in \mathbb{Z}, n \in \mathbb{N} \). Moreover,

\[
V = \bigoplus_{k \in \mathbb{Z}} V_k,
\]

is completely reducible, where \(V_k \) is the eigenspace with eigenvalue \(k \) of the operator \(T \), and each component \(V_k \) is irreducible as a \(W_{1+\infty} \)-module.

Proof. Notice that \(\varphi(f(m_1, n_1), f(m_2, n_2)) = 2 \phi(t^{m_1} D^{n_1}, t^{m_2} D^{n_2}) \). Therefore, Proposition 2.2 shows that \(V \) is a \(W_{1+\infty} \)-module with central charge \(c = 2 \). On the other hand, Lemma 2.1 indicates that each eigenspace \(V_k \) of the operator \(T \) is \(W_{1+\infty} \)-stable. In what follows, we shall prove that \(V_k \) is also irreducible under the actions of all \(f(m, n) \)'s.

To this end, we need introduce some notation. Fix a \(k \in \mathbb{Z} \), for any \(s \in \mathbb{N} \) such that \(s + k \geq 0 \), set \(v_k^{(s)} := a(0)^s a^* (-1)^{s+k} v_0 \) and

\[
V_k^{(s)} := \text{Span}_{\mathbb{C}} \{ a(n_1) \cdots a(n_s) a^*(m_1) \cdots a^*(m_{s+k}) v_0 \mid n_i \leq 0, m_j < 0 \}.
\]

It is clear that \(V_k = \bigoplus_{s \in \mathbb{N}, s+k \geq 0} V_k^{(s)} \). On the other hand, if we define the weight by

\[
\text{wt}(t^m D^n) = m,
\]

which induces a principle \(\mathbb{Z} \)-gradation of \(W_{1+\infty} \):

\[
W_{1+\infty} = \bigoplus_{j \in \mathbb{Z}} W_{1+\infty}^{(j)},
\]

we then have a triangular decomposition of \(W_{1+\infty} \) as follows

\[
W_{1+\infty} = W_{1+\infty}^{(-)} \bigoplus W_{1+\infty}^{(0)} \bigoplus W_{1+\infty}^{(+)}
\]

where \(W_{1+\infty}^{(-)} = \{ t^m D^n \mid m < 0, n \in \mathbb{N} \}, W_{1+\infty}^{(0)} = \{ D^n \mid n \in \mathbb{N} \}, W_{1+\infty}^{(+)} = \{ t^m D^n \mid m > 0, n \in \mathbb{N} \} \).

Lemma 2.1 shows that \(V_k \) is a weight module with respect to the abelian subalgebra \(W_{1+\infty}^{(0)} \). Since

\[
[f(0,n), f(m,0)] = \sum_{j=1}^{n} \binom{n}{j} (n-j)^j f(m,n-j),
\]

the actions of \(f(m,0), f(m,1), \ldots, f(m,n-1) \) on \(V \) can be expressed as some combinations of \(F(k,m) \)'s for \(k = 1, \ldots, n \), where \(F(k,m) := [f(0,k), f(m,0)] \). Therefore, it suffices to consider the actions of \(f(m,0) \)'s in the analysis of irreducibility of \(V_k \). By Lemma 2.1, it is easily seen that \(V_k^{(s)} \) is \(W_{1+\infty}^{(+)} \)-stable, and \(\{ v_k^{(s)} \mid s \in \mathbb{N}, s+k \geq 0 \} \) is the complete set of singular vectors of \(W_{1+\infty} \)-module \(V_k \) (here \(v \in V \) is called singular if \(W_{1+\infty}^{(+)} v = 0 \) (since \(v_k^{(s)} \) is a unique (\(\mathbb{C} \)-linear independent) singular vector in \(V_k^{(s)} \) according to the acting rule of \(f(m,0) \) for \(m > 0 \)).

Finally, noticing that \(f(-1,0) v_k^{(s)} \equiv v_k^{(s+1)} \) (mod \(V_k^{(s)} \)), \(f(m,0) V_k^{(s)} \subseteq V_k^{(s)} + V_k^{(s+1)} \) for \(m < 0 \), we see that \(V_k \) is irreducible owing to \(f(-m,0) V_k^{(s)} \subseteq V_k^{(s)} + V_k^{(s+1)} \) for \(m > 0 \).
Corollary 2.4. $V = \bigoplus_{k \in \mathbb{Z}} V_k$ is a completely reducible module for the Virasoro algebra Vir with central charge $c = 2$ under the action given by
\[
\pi(L_m) = f(m, 1),
\]
\[
\pi(c) = 2 \text{id}.
\]
for all $m \in \mathbb{Z}$. Each component V_k is also irreducible for Vir.

Proof. Lemma 2.1 indicates $L_0 = f(0, 1)$ acts diagonalizably on the weight $W_{1+\infty}$-module V. The proof of irreducibility of the weight $W_{1+\infty}$-module V_k (see the proof of Theorem 2.3) is reduced to consider the actions of operators $f(m, 0)$'s for $m \in \mathbb{Z}$. Now the same observation applies to the proof of irreducibility of the weight Vir-module V_k provided that we note the formula:
\[
f(m, 1) = \frac{1}{2m} [f(0, 2), f(m, 0)] - \frac{m}{2} f(m, 0), \quad \text{for } m \neq 0
\]
derived from Proposition 2.2.

Remark. In the Virasoro algebra Vir, the operator L_0 is usually called the energy operator by physicists (see [KRa]). In [KRa], only positive-energy representations (that is, L_0 is diagonal and all its eigenvalues are nonnegative) were discussed there and all irreducible positive-energy representations are proven to be of the form $V(c, h)$ with $h \geq 0$ (see Remark 3.5 in [KRa], here h is the eigenvalue of L_0, the highest weight module $V(c, h)$ is the irreducible quotient of the Vema Vir-module $M(c, h)$). The negative-energy representations of Vir, which are related to the Dirac positron theory, was pointed out to be interesting but lack of investigation there (see Section 4.2 [KRa]). In our case, Corollary 2.4 affords such negative-energy representations for Vir.

On the other hand, [KR] classified positive-energy representations with finite degeneracies of the Lie algebra $W_{1+\infty}$, while our bosonic construction in Theorem 2.3 then gives some negative-energy representations for $W_{1+\infty}$.

3. BOSONIC REPRESENTATION OF $W_{1+\infty}(gl_N)$

Let $M_N(C)$ be the $N \times N$ matrix algebra, $gl_N(C) = M_N(C)^{-}$ the general linear Lie algebra over C, then $gl_N(D) := gl_N(C) \otimes_C D$ is the general linear Lie algebra with coefficients in D. Let e_{ij} be the $N \times N$ matrix unit with 1 in the (i, j)-entry and 0 elsewhere, then $gl_N(D)$ has a basis
\[
\{e_{ij} \otimes t^m D^l \mid m \in \mathbb{Z}, l \in \mathbb{N}, 1 \leq i, j \leq n\}.
\]

Consider the subsequent central extension $\widehat{gl}_N(D)$ by C of the Lie algebra $gl_N(D)$, also denoted by $W_{1+\infty}(gl_N)$ (since $W_{1+\infty}(gl_N) = W_{1+\infty}$ when $N = 1$).

\[
\left[e_{ij} \otimes t^{m_1} D^{n_1}, e_{kl} \otimes t^{m_2} D^{n_2} \right] = \delta_{jk} e_{il} \otimes \sum_{i=0}^{n_1} \left(\begin{array}{c} n_1 \\ i \end{array} \right) m_2^i t^{m_1 + m_2} D^{n_1 + n_2 - i} \]
\[
- \delta_{il} e_{kj} \otimes \sum_{j=0}^{n_2} \left(\begin{array}{c} n_2 \\ j \end{array} \right) m_1^j t^{m_1 + m_2} D^{n_1 + n_2 - j} \]
\[
+ \Phi(e_{ij} \otimes t^{m_1} D^{n_1}, e_{kl} \otimes t^{m_2} D^{n_2}) c,
\]
for all \(m_1, m_2 \in \mathbb{Z}, n_1, n_2 \in \mathbb{N} \) and \(1 \leq i, j, k, l \leq N \), where \(\Phi \) is given by

\[
\Phi(e_{ij} \otimes t^{m_1}D^{n_1}, e_{kl} \otimes t^{m_2}D^{n_2}) = \begin{cases}
0, & \text{if } m_1 = 0, \\
(-1)^{n_1+1}j_{k,i} \delta_{m_1+m_2,0} \frac{1}{2} \sum_{i=1}^{m_1} (m_1 - i)^{n_1}i^{n_2}, & \text{if } m_1 > 0, \\
(-1)^{n_2}j_{i,k} \delta_{m_1+m_2,0} \frac{1}{2} \sum_{i=1}^{m_1} (m_1 - i)^{n_1}i^{n_2}, & \text{if } m_1 < 0.
\end{cases}
\]

Now we give a representation of the Lie algebra \(\mathcal{W}_{1+\infty}(gl_N) \).

Define \(S(N) \) to be the unital associative algebra with infinite many generators: \(a_i(n), a_j^*(n) \) \((n \in \mathbb{Z}, 1 \leq i, j \leq N) \) with the relations

\[
[a_i(n), a_j^*(m)] = [a_i^*(n), a_j^*(m)] = 0, \tag{3.1}
\]

\[
[a_i(n), a_j^*(m)] = -\delta_{i,j}\delta_{n+m,0}. \tag{3.2}
\]

We define the normal ordering as follows.

\[
:a_i(n)a_j^*(m): = \begin{cases}
 a_i(n)a_j^*(m), & n \leq m, \\
 a_j^*(m)a_i(n), & n > m,
\end{cases} \tag{3.3}
\]

for \(n, m \in \mathbb{Z}, 1 \leq i, j \leq N \).

Similar to (2.5)–(2.6), we have

\[
a_i(n)a_j^*(m) =: a_i(n)a_j^*(m) = -\delta_{i,j}\delta_{n+m,0}\theta(n-m), \tag{3.4}
\]

and

\[
[a_i(m)a_j^*(n), a_k(p)] = \delta_{j,k}\delta_{n+p,0}a_i(m),
\]

\[
[a_i(m)a_j^*(n), a_k^*(p)] = -\delta_{i,k}\delta_{m+p,0}a_j^*(n), \tag{3.5}
\]

for \(m, n, p \in \mathbb{Z}, 1 \leq i, j, k \leq N \).

Let \(S(N)^+ \) be the subalgebra generated by \(a_i(n), a_i^*(n), a_i^*(0) \) for \(n > 0 \) and \(1 \leq i \leq N \). Let \(S(N)^- \) be the subalgebra generated by \(a_i(0), a_i(n), a_i^*(n) \) for \(n < 0 \) and \(1 \leq i \leq N \). Those generators in \(S(N)^+ \) are called annihilation operators while those in \(S(N)^- \) are called creation operators. Let \(V(N) \) be a simple \(S(N) \)-module containing an element \(v_0 \), called a “vacuum vector”, and satisfying

\[
S(N)^+v_0 = 0. \tag{3.6}
\]

So all annihilation operators kill \(v_0 \) and

\[
V(N) = S(N)^-v_0. \tag{3.7}
\]

Now we may construct a class of bosons on \(V(N) \). For any \(m, n \in \mathbb{Z}, n \in \mathbb{N} \) and \(1 \leq i, j \leq N \), set

\[
f_{i,j}(m, n) = \sum_{k \in \mathbb{Z}} (-k)^n : a_i(m-k)a_j^*(k) : \tag{3.8}
\]

Although \(f_{i,j}(m, n) \) are infinite sums, they are well-defined as operators on \(V(N) \). Since, for any vector \(v \in V(N) = S(N)^-v_0 \), only finitely many terms in (3.8) can make a non-zero contribution to \(f_{i,j}(m, n)v \).
Lemma 3.1. For \(m, p, s \in \mathbb{Z} \), \(n \in \mathbb{N} \) and \(1 \leq i, j, k \leq N \),
\[
[f_{i,j}(m, n), a_k(p)] = \delta_{j,k} p^a a_i(m + p), \tag{3.9}
\]
\[
[f_{i,j}(m, n), a_k^*(p)] = -\delta_{i,k} p^a (-m - p)^n a_i^*(m + p), \tag{3.10}
\]
\[
[f_{i,j}(m, n), a_k(p)a_k^*(s)] = \delta_{j,k} p^a a(m + p)a^*(s) - \delta_{i,l} (-m - s)^n a(p)a^*(m + s). \tag{3.11}
\]

Proof. The proof is similar to that of Lemma 2.1.

Proposition 3.2. For \(m_1, m_2 \in \mathbb{Z} \), \(n_1, n_2 \in \mathbb{N} \) and \(1 \leq i, j, k, l \leq N \), we have
\[
[f_{i,j}(m_1, n_1), f_{k,l}(m_2, n_2)] = \sum_{i=0}^{n_1} \binom{n_1}{i} m_2^i f_{i,l}(m_1 + m_2, n_1 + n_2 - i) \]
\[
- \sum_{j=0}^{n_2} \binom{n_2}{j} m_1^j f_{k,j}(m_1 + m_2, n_1 + n_2 - j) \]
\[
+ \Psi(f_{i,j}(m_1, n_1), f_{k,l}(m_2, n_2)),
\]
where \(\Psi \) is given by
\[
\Psi(f_{i,j}(m_1, n_1), f_{k,l}(m_2, n_2)) = \begin{cases}
0, & \text{if } m_1 = 0, \\
(-1)^{n_1+1} \delta_{j,k} \delta_{i,l} \delta_{m_1+m_2,0} \sum_{i,m_1 = 1}^{m_1 + i} (m_1 - i)^{m_1} m_2^i, & \text{if } m_1 > 0, \\
(-1)^{n_1} \delta_{j,k} \delta_{i,l} \delta_{m_1+m_2,0} \sum_{i,m_1 = 1}^{m_1 + i} (m_1 - i)^{m_1} m_2^i, & \text{if } m_1 < 0.
\end{cases}
\]

Proof. The proof is similar to that of Proposition 2.2.

Let \(T = \sum_{i=1}^{N} f_{i,i}(0, 0) \), then one can easily show that
\[
[T, a_j(n)] = a_j(n), \quad [T, a_j^*(n)] = -a_j^*(n), \tag{3.13}
\]
for all \(n \in \mathbb{Z} \), \(1 \leq j \leq N \). For any
\[
v = a_{i_1}(n_1) \cdots a_{i_s}(n_s) a_{j_1}^*(m_1) \cdots a_{j_t}^*(m_t)v_0
\]
from \(V(N) \), noting that \(Tv_0 = 0 \), one has
\[
Tv = (s-t)v. \tag{3.14}
\]

Noting that
\[
\Psi(f_{i,j}(m_1, n_1), f_{k,l}(m_2, n_2)) = 2 \Phi(c_{ij} \otimes t^{m_1} D^{n_1}, e_{kl} \otimes t^{m_2} D^{n_2}),
\]
we may prove similarly

Theorem 3.3. \(V(N) \) is a level 2 module for the Lie algebra \(W_{1+\infty}(gl_N) \) under the action given by
\[
\pi(c) = 2 \text{id},
\]
for all \(m \in \mathbb{Z} \), \(n \in \mathbb{N} \) and \(1 \leq i, j \leq N \). Moreover,
\[
V(N) = \bigoplus_{k \in \mathbb{Z}} V_k,
\]
is completely reducible, where \(V_k \) is the eigenspace with eigenvalue \(k \) of the operator \(T \), and each component \(V_k \) is irreducible as a \(W_{1+\infty}(gl_N) \)-module.

ACKNOWLEDGMENTS

The project was supported by the NNSF of China (Grant No. 10271047, Grant No. 19731004), the TRAPOYT and the FUKT and the SFUDP from the MOE of China, the SYVPST from the SSTC, and the Shanghai Priority Academic Discipline from the SEC.

REFERENCES

