Some congruences related to the \(q \)-Fermat quotients

Victor J. W. Guo

Department of Mathematics, Shanghai Key Laboratory of PMMP, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China

jwguo@math.ecnu.edu.cn, http://math.ecnu.edu.cn/~jwguo

Abstract. We give \(q \)-analogues of the following congruences by Z.-W. Sun:

\[
\sum_{k=1}^{p-1} \frac{D_k}{k} \equiv -\frac{2^{p-1} - 1}{p} \pmod{p},
\]

\[
\sum_{k=1}^{p-1} \frac{H_k}{k^{2^k}} \equiv 0 \pmod{p}, \quad p \geq 5,
\]

where \(p \) is an odd prime, \(D_n = \sum_{k=0}^{n} \binom{n+k}{2k} \) are the Delannoy numbers, and \(H_n = \sum_{k=1}^{n} \frac{1}{k} \) are the harmonic numbers. We also prove that, for any positive integer \(m \) and prime \(p > m + 1 \),

\[
\sum_{1 \leq k_1 \leq \cdots \leq k_m \leq p-1} \frac{1}{k_1 \cdots k_m 2^{k_m}} \equiv \frac{1}{2} \sum_{k=1}^{p-1} \frac{(-1)^{k-1}}{k^m} \pmod{p},
\]

which is a multiple generalization of Kohnen’s congruence. Furthermore, a \(q \)-analogue of this congruence is established.

Keywords. Fermat quotients; \(q \)-Fermat quotients; Glaisher’s congruence; Kohnen’s congruence; \(q \)-Delannoy numbers; Dilcher’s identity

MR Subject Classifications: 11B65; 33D15; 05A10; 05A30

1 Introduction

Fermat’s Little Theorem states that if \(p \) is a prime, then for any integer \(a \) not divisible by \(p \), the number \(a^{p-1} - 1 \) is a multiple of \(p \). Numbers of the form \((a^{p-1} - 1)/p \) are called Fermat quotients of \(p \) to base \(a \). There are several different congruences for the Fermat quotients \((2^{p-1} - 1)/p \) in the literature.

Let \(p \geq 3 \) be a prime. Since \(\frac{1}{k} \binom{p}{k} \equiv \frac{(-1)^{k-1}}{k} \pmod{p} \) for \(1 \leq k \leq p-1 \), the following result is well-known:

\[
\frac{2^{p-1} - 1}{p} \equiv \frac{1}{2} \sum_{k=1}^{p-1} \frac{(-1)^{k-1}}{k} \equiv \sum_{k=1}^{(p-1)/2} \frac{(-1)^{k-1}}{k} \pmod{p}. \quad (1.1)
\]
A classical Glaisher's congruence (see [8,9]) for the Fermat quotients is

\[\sum_{k=1}^{p-1} \frac{2^{k-1}}{k} \equiv -\frac{2^{p-1} - 1}{p} \quad (\mod p). \quad (1.2) \]

Kohnen [17] established the following congruence

\[\sum_{k=1}^{p-1} \frac{1}{k \cdot 2^k} \equiv \sum_{k=1}^{(p-1)/2} \frac{(-1)^{k-1}}{k} \quad (\mod p). \quad (1.3) \]

Z.-W. Sun [25] prove that

\[\sum_{k=1}^{p-1} \frac{D_k}{k} \equiv -\frac{2^{p-1} - 1}{p} \quad (\mod p), \quad (1.4) \]

where \(D_n \) are the (central) Delannoy numbers defined by

\[D_n = \sum_{k=0}^{n} \binom{n+k}{2k} \binom{2k}{k}. \]

Let \(q \) be an indeterminate. The \(q \)-shifted factorial is defined by \((a; q)_n = (1 - a)(1 - aq) \cdots (1 - aq^{n-1})\), and the \(q \)-integer is defined as \([n] = (1 - q^n)/(1 - q)\). It is well known that

\[\frac{x^p - 1}{x - 1} = \prod_{k=1}^{p-1} (x - \zeta^k), \quad (1.5) \]

where \(\zeta \) is a \(p \)-th primitive root of unity. Letting \(p \) be an odd prime and \(x = -1 \) in (1.5), we obtain \((-\zeta; \zeta)_{p-1} = 1\), which means that

\[(-q; q)_{p-1} \equiv 1 \quad (\mod [p]). \quad (1.6) \]

The polynomials

\[\frac{(-q; q)_{p-1} - 1}{[p]} \]

are called \(q \)-Fermat quotients of \(p \) (see [21] for a more general form).

Pan [21] gave \(q \)-analogues of (1.1) and (1.2) as follows:

\[\sum_{k=1}^{p-1} \frac{(-1)^k}{[k]} \equiv -\frac{2(-q; q)_{p-1} - 2}{[p]} - \frac{(p - 1)(1 - q)}{2} \quad (\mod [p]), \quad (1.7) \]

\[\sum_{k=1}^{p-1} \frac{(-q; q)_{kq^k}}{2[k]} \equiv -\frac{(-q; q)_{p-1} - 1}{[p]} - \frac{(p - 1)(1 - q)}{2} \quad (\mod [p]), \quad (1.8) \]
Tauraso [29] obtained the following q-analogues of (1.2) and (1.3):

$$
\sum_{k=1}^{p-1} \frac{(-q; q)_{k-1} q^{-\binom{k}{2}}}{[k]} \equiv -\frac{(-q; q)_{p-1} - 1}{[p]} \quad \text{(mod } [p])
$$

$$
\sum_{k=1}^{p-1} \frac{q^k}{[k](-q; q)_k} \equiv \frac{(-q; q)_{p-1} - 1}{[p]} \quad \text{(mod } [p]).
$$

In this paper, we give a q-analogue of (1.4) and new q-analogues of (1.2) and (1.3).

Theorem 1.1 For any prime $p \geq 3$, there holds

$$
\sum_{k=1}^{p-1} \frac{D_k(q)}{[k]} \equiv -\frac{(-q; q)_{p-1} - 1}{[p]} + \frac{(p-1)(1-q)}{4} \quad \text{(mod } [p]).
$$

(1.9)

Here the q-Delannoy numbers $D_n(q)$ are defined by

$$
D_n(q) = \sum_{k=0}^{n} \frac{1 + q^k \binom{n+k}{2k} \binom{2k}{k} q^{\binom{k}{2} - 2nk}}{2^{n-k}}.
$$

where

$$
\binom{n}{k} = \frac{(q; q)_n}{(q; q)_k(q; q)_{n-k}}
$$

stands for the q-binomial coefficient.

Theorem 1.2 For any prime $p \geq 3$, there hold

$$
\sum_{k=1}^{p-1} \frac{(-q; q)_{k-1} q^k}{[k]} \equiv -\frac{(-q; q)_{p-1} - 1}{[p]} - \frac{(p-1)(1-q)}{2} \quad \text{(mod } [p]),
$$

(1.10)

$$
\sum_{k=1}^{p-1} \frac{q^{\binom{k+1}{2}}}{[k](-q; q)_k} \equiv \frac{(-q; q)_{p-1} - 1}{[p]} + \frac{(p-1)(1-q)}{2} \quad \text{(mod } [p]).
$$

(1.11)

We shall also give a multiple generalization of (1.3) as follows.

Theorem 1.3 For any positive integer m and prime $p > m + 1$, there holds

$$
\sum_{1 \leq k_1 \leq \cdots \leq k_m \leq p-1} \frac{1}{k_1 \cdots k_m 2^{k_m}} \equiv \frac{1}{2} \sum_{k=1}^{p-1} \frac{(-1)^{k-1}}{k^m} \quad \text{(mod } p).
$$

(1.12)

In particular, if m is even, then

$$
\sum_{1 \leq k_1 \leq \cdots \leq k_m \leq p-1} \frac{1}{k_1 \cdots k_m 2^{k_m}} \equiv 0 \quad \text{(mod } p).
$$

(1.13)
Note that, when \(m = 2 \), the congruence (1.13) can be written as
\[
\sum_{k=1}^{p-1} \frac{H_k}{k2^k} \equiv 0 \pmod{p}, \quad p \geq 5,
\]
where \(H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \) are the harmonic numbers. The congruence (1.14) was first proved by Z.-W. Sun [25] and generalized to the modulus \(p^2 \) case by Sun and Zhao [28]. Some other generalizations and refinements of (1.14) can be found in [18,27].

Let
\[
H_n(q) = \sum_{k=1}^{n} \frac{1}{[k]}
\]
be the \(q \)-harmonic numbers. We shall prove the following neat \(q \)-analogue of (1.14).

Theorem 1.4 For any prime \(p \geq 5 \), there holds
\[
\sum_{k=1}^{p-1} \frac{H_k(q)q^{(k+1)/2}}{[k](-q;q)_k} \equiv \frac{(p^2 - 1)(1 - q)^2}{24} \pmod{[p]}.
\]

The paper is organized as follows. In the next section, we give a proof of Theorem 1.1 by using some \(q \)-series identities and known \(q \)-congruences. In Section 3, we give proofs of Theorems 1.2–1.4 by first establishing a multiple series generalization of Kohnen’s identity [17]:
\[
\sum_{k=1}^{n} \frac{1}{k} (1 - x)^k = \sum_{k=1}^{n} \frac{(-1)^k}{k} \binom{n}{k} (x^k - 1).
\]
(1.15)

In fact, a \(q \)-analogue of (1.12) will be proved. Some consequences and remarks will be mentioned in the last section.

2 Proof of Theorem 1.1

Applying the Lagrange interpolation formula for \(x^r \) at the values \(q^{-k} \) \((0 \leq k \leq n)\) of \(x \), we have the following result (see [12, Theorem 1.1] for a generalization), which will be used in the proof of Theorem 1.1.

Lemma 2.1 For \(n \geq 1 \) and \(0 \leq r \leq n \), there holds
\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{q^{(k+1)/2} - rk}{1 - xq^k} = \frac{(q;q)_n}{(x; q)_{n+1}} x^r.
\]
(2.1)
Proof of Theorem 1.1. By the q-Lucas theorem (see [4, 11, 20]), or by the factorization of q-binomial coefficients into cyclotomic polynomials (see [3, 16]), for any prime $p \geq 3$ and $(p - 1)/2 < k < p$, there holds

$$\binom{2k}{k} \equiv 0 \pmod{p}.$$

Hence, by the q-Chu-Vandermonde identity (see [1, (3.3.10)]), we have

$$\sum_{m=1}^{p-1} D_m(q) - 1 = \sum_{m=1}^{p-1} \sum_{k=1}^{m} \frac{1 + q^k}{2} \binom{2k}{k} \binom{m+k}{2k} q^{(k-2mk}$$

$$= \sum_{k=1}^{p-1} \frac{1 + q^k}{2} \binom{2k}{k} q^{(k)} \sum_{m=k}^{p-1} \sum_{j=k}^{2k} \frac{m}{[m]} \binom{m}{j} \binom{k}{2k-j}$$

$$\equiv \sum_{k=1}^{(p-1)/2} \frac{1 + q^k}{2} \binom{2k}{k} q^{(k)} \sum_{j=k}^{2k} \sum_{m=j}^{p-1} \frac{m}{[m]} \binom{m}{j} \binom{k}{2k-j} \pmod{p}.$$

Note that

$$\frac{1}{[m]} \binom{m}{j} = \frac{1}{[j]} \binom{m-1}{j-1},$$

$$\sum_{m=j}^{p-1} \frac{m-1}{[j-1]} q^{-m} = \binom{p-1}{j} q^{-(p-1)j},$$

$$\binom{p-1}{k} = \prod_{j=1}^{k} \frac{1 - q^{p-j}}{1 - q^j} = \prod_{j=1}^{k} \frac{1 - q^{-j}}{1 - q^j} = (-1)^k q^{-(k+1)/2} \pmod{p}. \quad (2.2)$$

For $1 \leq k \leq (p-1)/2$, we have

$$\sum_{j=k}^{2k} \sum_{m=j}^{p-1} q^{-j(2k-j+m)} \frac{m}{[m]} \binom{k}{2k-j} = \sum_{j=k}^{2k} \frac{q^{-j(2k-j)}}{[j]} \binom{k}{j} \sum_{m=j}^{p-1} \frac{m-1}{[j-1]} q^{-m}$$

$$\equiv \sum_{j=k}^{2k} q^{-j(2k-j+p-1)} \frac{k}{[j]} \binom{p-1}{j} \pmod{p}$$

$$\equiv \sum_{j=k}^{2k} (-1)^j q^{(j+1)/2-2j} k \binom{k}{j} \pmod{p}.$$
By Lemma 2.1, we have
\[\sum_{j=k}^{2k} (-1)^j q^{(j+1) - 2j} \binom{k}{j - k} = (1 - q)q^{-k(3k-1)/2} \sum_{j=k}^{2k} (-1)^j q^{j-k+1} - (j-k)q \binom{k}{j - k} \]
\[= (1-k)(1-q)q^{-k(3k-1)/2+k^2} \]
\[= (-1)^k q^{-k} \binom{k}{k+1}. \]

It follows that
\[\sum_{m=1}^{p-1} \frac{D_m(q) - 1}{m} \equiv \sum_{k=1}^{(p-1)/2} \frac{(-1)^k (1 + q^k)}{2k} \pmod{[p]}. \] (2.3)

Since \(q^{-k} \equiv q^{p-k} \pmod{[p]} \), we have
\[\frac{(-1)^k q^k}{k} = \frac{(-1)^k q^k (1 - q)}{1 - q^k} = \frac{(-1)^k - (1 - q)}{1 - q^k} = \frac{(-1)^{p-k} (1 - q)}{1 - q^p} = \frac{(-1)^{p-k}}{[p-k]}, \] (2.4)

and so the congruence (2.3) can be written as
\[\sum_{m=1}^{p-1} \frac{D_m(q) - 1}{m} \equiv \frac{1}{2} \sum_{k=1}^{(p-1)/2} \frac{(-1)^k}{k} + \frac{1}{2} \sum_{k=1}^{(p-1)/2} \frac{(-1)^{p-k}}{[p-k]} \]
\[= \frac{1}{2} \sum_{k=1}^{(p-1)/2} \frac{(-1)^k}{k} + \frac{1}{2} \sum_{k=(p+1)/2}^{p-1} \frac{(-1)^k}{k} \]
\[= \frac{1}{2} \sum_{k=1}^{p-1} \frac{(-1)^k}{k} \pmod{[p]}. \]

The proof then follows from (1.7) and the following congruence due to Andrews [2]:
\[H_{p-1}(q) \equiv \frac{(p-1)(1-q)}{2} \pmod{[p]}. \] (2.5)

Remark. If we define the \(q \)-Delannoy numbers by
\[\overline{D}_n(q) = \sum_{k=0}^{n} \binom{n+k}{2k} \binom{k}{2k} q^{k-2nk}, \]
then we have the following congruence:
\[\sum_{m=1}^{p-1} \frac{1 - \overline{D}_m(q)}{m} \equiv \sum_{k=1}^{(p-1)/2} \frac{(-1)^k}{k} \pmod{[p]}. \] (2.6)

However, it is difficult to determine the right-hand side of (2.6) modulo \([p]\). This is why we need to replace \(\overline{D}_n(q) \) by \(D_n(q) \) in Theorem 1.1.
3 Proofs of Theorems 1.2–1.4

Dilcher [5] established the following identity:

\[
\sum_{1 \leq k_1 \leq \cdots \leq k_m \leq n} \frac{q^{k_1+\cdots+k_m}}{(1-q^{k_1}) \cdots (1-q^{k_m})} = \sum_{k=1}^{n} (-1)^{k-1} \left[\frac{n}{k} \right] \frac{q^{(k+1)\over 2}}{(1-q^k)^m},
\]

(3.1)

which is a multiple series generalization of Van Hamme’s identity [30]:

\[
\sum_{k=1}^{n} \frac{q^k}{1-q^k} = \sum_{k=1}^{n} (-1)^{k-1} \left[\frac{n}{k} \right] \frac{q^{(k+1)\over 2}}{1-q^k}.
\]

(3.2)

Further generalizations of Dilcher’s identity (3.1) have been obtained by Fu and Lascoux [6, 7], Zeng [32], Ismail and Stanton [15], Guo and Zhang [13], Gu and Prodinger [10], Guo and Zeng [11], and Xu [31].

In what follows we give a new generalization of Dilcher’s identity (3.1) that also includes Kohnen’s identity (1.15) as a special case.

Theorem 3.1 For \(m, n \geq 1\), there holds

\[
\sum_{1 \leq k_1 \leq \cdots \leq k_m \leq n} \frac{(x;q)_{k_1+\cdots+k_m}}{(1-q^{k_1}) \cdots (1-q^{k_m})} = \sum_{k=1}^{n} (-1)^{k-1} \left[\frac{n}{k} \right] \frac{q^{(k+1)\over 2}}{(1-q^k)^m} (x^k - 1).
\]

(3.3)

Proof. For \(1 \leq r \leq n\), the coefficient of \(x^r\) in the left-hand side of (3.3) is given by

\[
(-1)^r q^{(r)\over 2} \sum_{k_m=r}^{n} \frac{k_m}{k_{m-1}=r} \cdots \sum_{k_2=r}^{k_1=r} \left[k_1 \right] \frac{q^{k_1+\cdots+k_m}}{(1-q^{k_1}) \cdots (1-q^{k_m})}.
\]

(3.4)

It is easy to see that

\[
\sum_{k_1=r}^{k_2} \left[k_1 \right] \frac{q^{k_1}}{1-q^{k_1}} = \frac{1}{1-q^r} \sum_{k_1=r}^{k_2} \left[k_1 - 1 \right] q^{k_1} = \frac{1}{1-q^r} \left[k_2 \right] q^r.
\]

(3.5)

By repeatedly using the summation formula (3.5), one sees that (3.4) is equal to

\[
(-1)^r q^{(r)\over 2} \sum_{k_m=r}^{n} \frac{k_m}{k_{m-1}=r} \left[k_1 \right] \frac{q^{k_1+\cdots+k_m}}{(1-q^{k_1}) \cdots (1-q^{k_m})}.
\]

(3.6)

That is to say, the coefficients of \(x^r\) in both sides of (3.3) are equal for \(1 \leq r \leq n\). Also (3.3) is true for \(x=1\). Therefore it must be true for any \(x\). □

Remark. An equivalent form of the fact that (3.4) equals (3.6) has been given by Fu and Lascoux [7, Lemma 2.1]. The proof given here is more straightforward.

When \(m = 1\), we obtain the following result, which is crucial in the proof of Theorem 1.2.
Corollary 3.2 For \(n \geq 1 \), there holds
\[
\sum_{k=1}^{n} \left(\frac{x}{q} \right)_k q^k \frac{1}{1 - q^k} = \sum_{k=1}^{n} (-1)^k q^{\left(\frac{k+1}{2}\right)} \left[\frac{n}{k} \right] (x^k - 1).
\] (3.7)

Proof of Theorem 1.2. In (3.7) we set \(n = p - 1 \) and \(x = -1 \) and multiply both sides by \(1 - q \). By (2.2) and (2.5), the equation (3.7) simplifies to
\[
\sum_{k=1}^{p-1} (-1; q)_k q^k \equiv \sum_{k=1}^{p-1} (-1)^k q^{p-1 - 2} - (p - 1)(1 - q) \pmod{[p]},
\] (3.8)
which is equivalent to the congruence (1.10).

Replacing \(k \) by \(p - k \) and applying (2.4) and (1.6), we get
\[
\sum_{k=1}^{p-1} (-1; q)_k q^k \equiv -2 \sum_{k=1}^{p-1} (-1)^k q^{p-1 - 2} \pmod{[p]},
\] (3.9)
Combining (3.8) and (3.9), we complete the proof of (1.11). \(\square \)

By (2.4), we have
\[
\sum_{k=1}^{p} \frac{(-1)^k}{[k]} = \sum_{k=1}^{(p-1)/2} \frac{(-1)^k}{[k]} + \sum_{k=1}^{(p-1)/2} \frac{(-1)^{p-k}}{[p-k]} \equiv \sum_{k=1}^{(p-1)/2} \frac{(-1)^k (1 + q^k)}{[k]} \pmod{[p]},
\]
and so, by (1.7), the congruence (1.11) can be written as
\[
\sum_{k=1}^{p-1} q^{\frac{k+1}{2}} \equiv \sum_{k=1}^{(p-1)/2} \frac{(-1)^{k-1} (1 + q^k)}{2[k]} + \frac{(p - 1)(1 - q)}{4} \pmod{[p]},
\]
which clearly reduces to (1.3) when \(q = 1 \).

We now give a special case of Theorem 3.1. Because of its importance, we also label it as a theorem.

Theorem 3.3 For any positive integer \(m \) and prime \(p \geq 3 \), there holds
\[
\sum_{1 \leq k_1 \leq \cdots \leq k_m \leq p-1} \frac{q^{(k_m+1)}}{[k_1] \cdots [k_m] (-q; q)_{k_m}} \equiv (-1)^m \sum_{k=1}^{p-1} \frac{q^{(m-1)k}}{2[k]^m}((-1)^k - 1) \pmod{[p]}. \] (3.10)
Proof. Letting \(n = p - 1 \) and \(x = -1 \), and multiplying both sides by \((1 - q)^m\) in (3.3), we obtain
\[
\sum_{1 \leq k_1 \leq \cdots \leq k_m \leq p-1} \frac{(-1; q)_{k_1}q^{k_1+\cdots+k_m}}{[k_1] \cdots [k_m]} = \sum_{k=1}^{p-1} (-1)^k \binom{p-1}{k} q^{\frac{k(m+1)}{2}} \frac{q^{(k+1)\cdot k_m}}{[k]^{m}}((-1)^k - 1). \tag{3.11}
\]
Replacing \(k_i \) by \(p - k_i \) for \(1 \leq i \leq m \) in (3.11), noticing that \([p-k_i] \equiv -q^{-k_i}[k_i] \pmod{[p]}\) and
\[
(-1; q)_{p-k_i} = 2(-q; q)_{p-1}^{(p-1)} \equiv \frac{2}{(-q^{-k_1}; q)_{k_1}} = \frac{2q^{(k_1+1)}}{(-q; q)_{k_1}} \pmod{[p]},
\]
and then applying (2.2), we get
\[
(-1)^m \sum_{1 \leq k_m \leq \cdots \leq k_1 \leq p-1} \frac{2q^{(k_1+1)}}{[k_1] \cdots [k_m]}(-q; q)_{k_1} \equiv \sum_{k=1}^{p-1} q^{(m-1)k} \frac{q^{(m-1)k}}{[k]^{m}}((-1)^k - 1) \pmod{[p]}. \tag{3.12}
\]
The proof then follows from reversing the order of \(k_1, \ldots, k_m \) in (3.12).

Proof of Theorem 1.3. Letting \(q = 1 \) in (3.10) and using the classical congruence (see, for example, [14, p. 48, Exercise 11]):
\[
\sum_{k=1}^{p-1} \frac{1}{k^m} \equiv 0 \pmod{p}, \quad \text{for } p > m + 1,
\]
we complete the proof of (1.12).

For \(m \) even, replacing \(k \) by \(p - k \), one sees that
\[
\sum_{k=1}^{p-1} \frac{(-1)^k}{k^m} \equiv \sum_{k=1}^{p-1} \frac{(-1)^p}{(p-k)^m} \equiv - \sum_{k=1}^{p-1} \frac{(-1)^k}{k^m} \equiv 0 \pmod{p}.
\]
This proves (1.13).

Proof of Theorem 1.4. When \(m = 2 \), the congruence (3.10) can be written as
\[
\sum_{k=1}^{p-1} \frac{H_k(q)q^{k+1}}{[k](-q; q)_k} \equiv \sum_{k=1}^{p-1} \frac{(-1)^k q^k}{2[k]^2} - \sum_{k=1}^{p-1} \frac{q^k}{2[k]^2} \pmod{[p]}, \quad \text{for } p \geq 5. \tag{3.13}
\]
Since \(q^{-k} \equiv q^{p-k} \pmod{[p]} \), we have
\[
\frac{q^k}{[k]^2} = \frac{q^k(1-q)^2}{(1-q^k)^2} = \frac{q^{-k}(1-q)^2}{(1-q^{-k})^2} \equiv \frac{q^{p-k}(1-q)^2}{(1-q^{p-k})^2} = \frac{q^{p-k}}{[p-k]^2} \pmod{[p]},
\]
and so
\[
\sum_{k=1}^{p-1} \frac{(-1)^k q^k}{[k]^2} \equiv \sum_{k=1}^{p-1} \frac{(-1)^k q^{p-k}}{[p-k]^2} = - \sum_{k=1}^{p-1} \frac{(-1)^k q^k}{[k]^2} \equiv 0 \pmod{[p]}, \tag{3.14}
\]
where in the second step we replaced \(k \) by \(p - k \). On the other hand, Shi and Pan [22, (4)] proved that

\[
\sum_{k=1}^{p-1} q^k \equiv -\frac{(p^2 - 1)(1 - q)^2}{12} \quad \text{(mod \([p]\))}, \quad \text{for } p \geq 5. \tag{3.15}
\]

The proof then follows form combing (3.13)–(3.15).

\[\square\]

4 Some consequences and remarks

Corollary 4.1 For any prime \(p \geq 3 \), there holds

\[
\sum_{k=1}^{p-1} \frac{kq^k}{1 + q^k} \equiv \frac{p(p - 1)(1 - q)}{2} + p \sum_{k=1}^{p-1} \frac{(-q; q)_{k-1}q^k}{1 - q^k} \quad \text{(mod \([p]\))}. \tag{4.1}
\]

Proof. Multiplying both sides of (1.10) by \(1 - q^p \), we have

\[
\left(-q; q\right)_{p-1} - 1 \equiv -(1 - q^p) \left(\frac{(p - 1)(1 - q)}{2} + \sum_{k=1}^{p-1} \frac{(-q; q)_{k-1}q^k}{[k]}\right) \quad \text{(mod \([p]^2\))}. \tag{4.2}
\]

Differentiating both sides of (4.2) with respect to \(q \), we obtain

\[
\left(-q; q\right)_{p-1} \sum_{k=1}^{p-1} \frac{kq^{k-1}}{1 + q^k} \equiv pq^{p-1} \left(\frac{(p - 1)(1 - q)}{2} + \sum_{k=1}^{p-1} \frac{(-q; q)_{k-1}q^k}{[k]}\right) \quad \text{(mod \([p]\))}. \tag{4.3}
\]

Since \((-q; q)_{p-1} \equiv q^p \equiv 1 \quad \text{(mod \([p]\))}, \) one sees that (4.3) is equivalent to (4.1). \[\square\]

Combining (1.10) and (4.1), we are led to the following result.

Corollary 4.2 For any prime \(p \geq 3 \), there holds

\[
\frac{(-q; q)_{p-1} - 1}{1 - q^p} \equiv -\frac{1}{p} \sum_{k=1}^{p-1} \frac{kq^k}{1 + q^k} \quad \text{(mod \([p]\))}.
\]

Letting \(q \to 1 \), \(n = p - 1 \), and \(x \in \mathbb{Z} \) in (3.3), we get

Corollary 4.3 For any integer \(x \), positive integer \(m \), and prime \(p \geq 3 \), there holds

\[
\sum_{1 \leq k_1 \leq \cdots \leq k_m \leq p-1} \frac{(1 - x)^{k_1}}{k_1 \cdots k_m} \equiv \sum_{k=1}^{p-1} \frac{(x - 1)^{k}}{k^m} \quad \text{(mod \(p\))}. \tag{4.4}
\]
Letting \(x = -1 \) or \(x = 2 \) in (4.4), we have

\[
\sum_{1 \leq k_1 \leq \ldots \leq k_m \leq p-1} \frac{2^{k_1}}{k_1 \cdots k_m} \equiv \sum_{k=1}^{p-1} \frac{((-1)^k - 1)}{k} \pmod{p}, \tag{4.5}
\]

\[
\sum_{1 \leq k_1 \leq \ldots \leq k_m \leq p-1} \frac{(-1)^{k_1}}{k_1 \cdots k_m} \equiv \sum_{k=1}^{p-1} \frac{(2^k - 1)}{k} \pmod{p}. \tag{4.6}
\]

It follows from (4.5) and (4.6) that

\[
\sum_{1 \leq k_1 \leq \ldots \leq k_m \leq p-1} \frac{2^{k_1} - (-1)^{k_1}}{k_1 \cdots k_m} \equiv \sum_{k=1}^{p-1} \frac{((-1)^k - 2^k)}{k} \pmod{p}. \tag{4.7}
\]

The \(m = 3 \) case of (4.7) has already appeared in [28]. Z.-W. Sun [24] proved that

\[
\sum_{k=1}^{(p-1)/2} \frac{1}{k^2} \equiv \sum_{k=1}^{\lfloor 3p/4 \rfloor} \frac{(-1)^{k-1}}{k} \pmod{p}, \tag{4.8}
\]

where \(\lfloor x \rfloor \) denotes the greatest integer not exceeding \(x \). On the other hand, Z.-H. Sun [23, Theorem 4.1(iii)] gave a generalization of Kohnen’s congruence (1.3) as follows:

\[
\sum_{k=1}^{p-1} \frac{1}{k^2} \equiv \frac{2^{p-1} - 1}{p} - \frac{(2^{p-1} - 1)^2}{2p} \pmod{p^2}, \tag{4.9}
\]

of which an elementary proof has been given by Meštrović [19].

We end the paper with the following problem.

Problem 4.4 Are there any \(q \)-analogues of the congruences (4.8) and (4.9)?

Acknowledgment. This work was partially supported by the Fundamental Research Funds for the Central Universities and the National Natural Science Foundation of China (grant 11371144).

References

