A RESULT ON THE BRUHAT ORDER OF A COXETER GROUPS

JIAN-YI SHI

Department of Mathematics, East China Normal University, Shanghai, 200062, P.R.China

Let $W = (W, S)$ be a Coxeter group with S the set of its Coxeter generators. Let \leq be the Bruhat order of W. That is, we denote $y \leq w$ for $y, w \in W$ if there exist reduced expressions $w = s_1s_2 \cdots s_r$ and $y = s_{i_1}s_{i_2} \cdots s_{i_t}$ with $s_{i_j} \in S$, $1 \leq j \leq r$, and i_1, i_2, \cdots, i_t a subsequence of $1, 2, \ldots, r$. Let $\ell(x)$ be the length function on W. To each $w \in W$, we associate two subsets of S:

$$\mathcal{L}(w) = \{s \in S \mid sw < w\} \quad \text{and} \quad \mathcal{R}(w) = \{s \in S \mid ws < w\}.$$

Now we can state our main result as follows.

Theorem 1. Suppose that $x, y \in W$ and $s \in S$ satisfy the condition $s \not\in \mathcal{L}(y) \cup \mathcal{R}(x)$. Then $xy < xsy$.

By a Coxeter transformation on an expression $s_1s_2 \cdots s_t$ with $s_i \in S$, we mean that it is one of the following transformations.

(A) If there exist some $a, b \in S$ and $i, j \in \mathbb{Z}$ with $a \neq b$ and $1 \leq i < j \leq t$ such that

$$s_is_{i+1} \cdots s_j \equiv aba \cdots \quad \text{and} \quad o(ab) = j - i + 1.$$

then we define a transformation

$$s_1s_2 \cdots s_t \mapsto s_1s_2 \cdots s_{i-1} \underbrace{bab \cdots}_{o(ab) \text{ factors}} s_{j+1} \cdots s_t,$$

where the notation $o(x)$ stands for the order of the element x.

Key words and phrases. Coxeter groups, Bruhat order, Hecke algebras.
(B) If there exists some \(i \in \mathbb{Z} \), \(1 \leq i < t \), such that \(s_i = s_{i+1} \), then we define a transformation
\[
s_1 s_2 \cdots s_t \mapsto s_1 s_2 \cdots s_{i-1} s_{i+2} \cdots s_t.
\]
(C) For any \(i \), \(0 \leq i \leq t \), and \(a \in S \), we define a transformation
\[
s_1 s_2 \cdots s_t \mapsto s_1 s_2 \cdots s_i(a) s_{i+1} \cdots s_t.
\]

Remark 2. Given any two expressions \(s_1 s_2 \cdots s_k \) and \(t_1 t_2 \cdots t_m \) of \(W \) with \(s_i, t_j \in S \) and \(s_1 s_2 \cdots s_k \not\equiv t_1 t_2 \cdots t_m \), it is well known that the expression \(s_1 s_2 \cdots s_k \) can be passed to \(t_1 t_2 \cdots t_m \) by a succession of Coxeter transformations. In particular, in the case when \(t_1 t_2 \cdots t_m \) is a reduced expression, \(s_1 s_2 \cdots s_k \) can be passed to \(t_1 t_2 \cdots t_m \) by only performing the Coxeter transformations of kinds (A) and (B).

Define a set of triples
\[
T = \{ (x, s, y) \mid x, y \in W, s \in S, s \not\in \mathcal{L}(y) \cup \mathcal{R}(x) \}.
\]
For \(i \in \mathbb{Z} \), define
\[
T_i = \{ (x, s, y) \in T \mid \ell(x) + \ell(y) + 1 - \ell(xsy) = i \}.
\]
Clearly, if \(T_i \neq \emptyset \) then \(i \geq 0 \) and \(i \in 2\mathbb{Z} \). Thus we have a decomposition:
\[
T = \bigcup_{j \geq 0} T_{2j}.
\]
If \((x, s, y) \in T_i \) then we define \(p(x, s, y) = i \). Then Theorem 1 can be reformulated as follows.

Theorem 3. If \((x, s, y) \in T \) then \(xy < xsy \).

It is obvious that

Lemma 4. If \((x, s, y) \in T_0 \) then \(xy < xsy \).

Let \(g \equiv s_1 s_2 \cdots s_k s_1 t_1 t_2 \cdots t_m \) be an expression of \(W \) with \(s_i, s_j \in S \) satisfying the following conditions:
(a) Both \(x \equiv s_1 s_2 \cdots s_k \) and \(y \equiv t_1 t_2 \cdots t_m \) are reduced expressions.
(b) \((x, s, y) \in T_{2n} \) for some \(n > 0 \).

Let \(g' \) be an expression obtained from the expression \(g \) by a Coxeter transformation \(f \) of kind \(\neq (C) \). Then \(f \) must have kind (A). Suppose that \(f \) does not involve the factor \(s \). Let \(s' = s, x' \equiv s'_1 s'_2 \cdots s'_k \), and \(y' \equiv t'_1 t'_2 \cdots t'_m \)
be such that \(g' \equiv x' s' y' \). Then \(x' \) and \(y' \) are also reduced expressions with \(x' = x \) and \(y' = y \).

Now suppose that \(f \) involves the factor \(s \). Then we have
\[
g \equiv g_1 (aba \cdots) g_2 \quad \text{and} \quad g' \equiv g_1 (bab \cdots) g_2
\]
for some subexpressions \(g_1, g_2 \) of \(g \), where \(a, b \in S \) satisfy \(a \neq b \) and \(r = o(ab) \), and \(s \) is the \(i \)-th factor in the parentheses of the expression \(g \) with \(1 \leq i \leq r \).

Then by choosing \(s' \) to be the \((r + 1 - i)\)-th factor in the parentheses of the expression \(g' \), we have the expression
\[
g' \equiv g_1 (bab \cdots) g_2 \equiv s'_1 s'_2 \cdots s'_k t'_1 t'_2 \cdots t'_m
\]
with \(s'_i, t'_j \in S \) satisfying the following conditions:
(i) \(k' = k + r + 1 - 2i, m' = m + 2i - r - 1 \).
(ii) Let \(x \equiv s'_1 s'_2 \cdots s'_k \) and \(y' \equiv t'_1 t'_2 \cdots t'_m \). Then \(xy' = x \) and \((x', s', y') \in T_{2h} \) for some \(h \leq n \). The equality \(h = n \) holds if and only if both the expressions \(x' \) and \(y' \) are reduced.

Sum up, we have the following result.
Lemma 5. Let \(g \equiv s_1s_2 \cdots s_kst_1t_2 \cdots t_m, x, y, n \) be as above. Let \(g' \) be an expression obtained from the expression \(g \) by a Coxeter transformation \(f \) of kind \(\neq (C) \). Then we can choose a factor \(s' \) in the expression \(g' \) such that

(a) \(g' = s_1's_2' \cdots s_k't_1't_2' \cdots t_m' \) with \(s_i', t_j' \in S \).

(b) Let \(x' \equiv s_1's_2' \cdots s_k' \) and \(y' \equiv t_1't_2' \cdots t_m' \). Then \(x'y' = xy \) and \((x', s', y') \in T_{2h} \) for some \(h \leq n \). The equality \(h = n \) holds if and only if both the expressions \(x' \) and \(y' \) are reduced.

Again assume that \(g \equiv s_1s_2 \cdots s_kst_1t_2 \cdots t_m, x, y, n \) are as above. If \(n > 0 \), then by Remark 2, there exists a sequence of expressions \(g_0 \equiv g, g_1, \ldots, g_h \) of \(xsy \) for some \(h > 0 \) such that for every \(i, 1 \leq i \leq h \), \(g_i \) is obtained from \(g_{i-1} \) by a Coxeter transformation of kind \(\neq (C) \) and \(g_h \) is a reduced expression. By Lemma 5, we see that there must exist some integer \(u \) with \(1 \leq u < h \) such that

(i) \(g_i \equiv (s(1)i) \cdots s(i, k_i) s(i)t(i, 1) \cdots t(i, m_i) \) with \(s(i), j \), \(t(i, j) \in S \) for all \(i \), \(0 \leq i < u \).

(ii) The expressions \(s(i, 1) \cdots s(i, k_i) \) and \(t(i, 1) \cdots t(i, m_i) \) are reduced for all \(i \), \(0 \leq i < u \).

(iii) Either \(s(u, 1) \cdots s(u, k_u) \) or \(t(u, 1) \cdots t(u, m_u) \) is not a reduced expression.

(iv) Let \(x_i = s(i, 1) \cdots s(i, k_i) \) and \(y_i = t(i, 1) \cdots t(i, m_i) \) for \(0 \leq i \leq u \). Then \(x_iy_i = xy \) and \((x_i, s(i), y_i) \in T_{2n} \) with \(n_i = n \) for \(0 \leq i < u \) and \(n_u < n \).

Given \((x, s, y) \in T \), we call a sequence of expressions, say \(g_0, g_1, \ldots, g_u \) for some \(u \geq 0 \), of \(xsy \) a declining sequence with respect to \((x, s, y) \), if the following conditions are satisfied.

(a) For every \(i, 1 \leq i \leq u \), \(g_i \) is obtained from \(g_{i-1} \) by a Coxeter transformation of kind \(\neq (C) \).

(b) The above conditions (i)-(iv) are satisfied, where \(n = p(x, s, y) \) and \((x, s, y) = (x_0, s(0), y_0) \).

Thus the above discussion shows that

Lemma 6. For any \((x, s, y) \in T \) with \(p(x, s, y) > 0 \), there exists some declining sequence with respect to \((x, s, y) \).

Proof of Theorem 3: Apply induction on \(p(x, s, y) \geq 0 \). If \(p(x, s, y) = 0 \) then it is just the assertion of Lemma 4. Now assume that \(p(x, s, y) > 0 \) and that the result has been shown for any \((x', s', y') \in T \) with \(p(x', s', y') < p(x, s, y) \). By Lemma 6, there exists a declining sequence \(g_0, g_1, \ldots, g_u \) with respect to \((x, s, y) \) as described above. Thus \(p(x_u, s(u), y_u) < p(x, s, y) \). By inductive hypothesis, we have \(xsy = x_ys(u)y_u > x_uy_u = xy \). So our result is shown. \(\square \)

Thus Theorem 1 follows as it is equivalent to Theorem 3.

By noting \(\ell(xsy) \equiv \ell(xy)(\mod 2) \), we see that in Theorem 1 we have

\[
\ell(xsy) > \ell(xy) + 1.
\]

For any subset \(J \) of \(S \), let \(W_J \) be the subgroup of \(W \) generated by \(J \).

Theorem 7. Given \(x, y \in W, J \subseteq S - R(x), \) and \(w \in W_J \), if \(\ell(wy) = \ell(w) + \ell(y) \), then \(xwy \leq xsy \) and \(\ell(xwy) \geq \ell(x) + \ell(y) \). In particular, in the case where \(\ell(xy) = \ell(x) + \ell(y) \), we have \(\ell(xwy) = \ell(x) + \ell(y) + \ell(w) \).

§2. SOME APPLICATIONS OF THEOREM 1.

We shall make some applications of Theorem 1 in the present section. The first one is concerned with some multiplication properties of a Hecke algebra. Let \(H \) be the Hecke algebra over \(A = \mathbb{Z}[u, u^{-1}] \) associated to a Coxeter group \((W, S) \) as below. \(H \) is a free \(A \)-module with a basis \(\{T_w \mid w \in W\} \) and its multiplication satisfies the rule.
The rule (1) are equivalent to the rules

\begin{equation}
T_s T_w = \begin{cases}
(u^{-1} - u)T_w + T_{sw}, & \text{if } s \in \mathcal{L}(w), \\
T_{sw}, & \text{if } s \notin \mathcal{L}(w).
\end{cases}
\end{equation}

For any \(x, y, z \in W\), define an element \(f_{x,y,z} \in A\) by

\begin{equation}
T_x T_y = \sum_z f_{x,y,z} T_z.
\end{equation}

It is easily seen from (2) that \(f_{x,y,z}\) is a polynomial in \(v = u^{-1} - u\) of positive coefficients.

Define a subset \(\Lambda(x, y) = \{z \in W \mid f_{x,y,z} \neq 0\}\) of \(W\) for any \(x, y \in W\). It is well known that there exists a unique maximal element, written \(\lambda(x, y)\) in \(\Lambda(x, y)\) with respect to the Bruhat order \(\leq\) (see [2]). That is,

\begin{equation}
\lambda(x, y) \geq z, \quad \forall z \in \Lambda(x, y).
\end{equation}

Here we shall apply Theorem 1 to show that there also exists a unique minimal element in \(\Lambda(x, y)\) with respect to the same partial order.

Theorem 8. For any \(x, y \in W\), we have \(xy \in \Lambda(x, y)\) and

\begin{equation}
xy \leq z, \quad \forall z \in \Lambda(x, y).
\end{equation}

Proof. Apply induction on \(\ell(x) \geq 0\). It is trivial in case \(\ell(x) = 0\). Now assume \(\ell(x) > 0\). Let \(s \in \mathcal{R}(x)\) and \(x' = xs\). Then

\[T_x T_y = T_{x'} T_s T_y.\]

If \(s \notin \mathcal{L}(y)\), then \(T_x T_y = T_{x'} T_{sy}\) and so \(\Lambda(x, y) = \Lambda(x', sy)\). Since \(\ell(x') < \ell(x)\), this implies by the inductive hypothesis that

\[x' sy \leq z, \quad \forall z \in \Lambda(x', sy).\]

So we get (5) in this case. If \(s \in \mathcal{R}(y)\) then

\[T_x T_y = T_{x'} (v \cdot T_y + T_{sy}) = v \cdot T_{x'} T_y + T_{x'} T_{sy}.\]

By the positivity of the coefficients of the \(f_{x,y,z}\)'s, we have

\[\Lambda(x, y) = \Lambda(x', y) \cup \Lambda(x', sy).\]

By the inductive hypothesis and the fact that \(\ell(x') < \ell(x)\), we get

\[x'y \leq z, \quad \forall z \in \Lambda(x', y)\]

and

\[x'sy \leq z', \quad \forall z' \in \Lambda(x', sy).\]

But \(s \notin \mathcal{R}(x') \cup \mathcal{L}(sy)\). This implies from Theorem 1 that

\[xy = x's(y) < x's(y) = x'y.\]

Therefore we again get (5). \(\square\)

Let \(\deg f_{x,y,z}\) be the degree of the polynomial \(f_{x,y,z}\) in \(v = u^{-1} - u\). Here we state a property of \(f_{x,y,z}\).
Corollary 9. For any $x, y \in W$ and $z \in \Lambda(x,y)$, we have $\deg f_{x,y,z} \geq 0$. The equality holds if and only if $z = xy$. The constant of $f_{x,y,z}$ in v is equal to zero if $z \neq xy$ and is equal to 1 if $z = xy$.

Proof. This follows directly from the multiplication rule of the Hecke algebra H and Theorem 8. □

The second application of Theorem 1 is to verify a conjecture of L. K. Jones. Let g be an expression of W. For any $s \in S$, let $n_s(g)$ be the number of the factor s occurring in g. For any $w \in W$, let $I(w)$ be the set of all reduced expressions of w. Define a number

$$N_s(w) = \min\{n_s(g) \mid g \in I(w)\}.$$

Then Jones made the following conjecture which plays a crucial role in his paper.

Conjecture 10. Let (W, S) be a symmetric group. Suppose that $x, y \in W$ and $s \in S$ satisfy the conditions $s \notin \mathcal{L}(y) \cup \mathcal{R}(x)$. Then for any $t \in S - \{s\}$, we have $N_s(xy) \leq N_s(xsy)$.

To show the above conjecture, we shall prove the following result which includes this conjecture as a special case.

Proposition 11. Let (W, S) be a Coxeter group. Let $x, y \in W$ and $s \in S$ be such that $s \notin \mathcal{L}(y) \cup \mathcal{R}(x)$. Then for any $t \in S$, we have $N_s(xy) \leq N_s(xsy)$.

Proof. It is well known that for any reduced expression $s_1s_2 \cdots s_r$ of w with $s_i \in S$, there exists some subsequence i_1, i_2, \cdots, i_t of $1, 2, \cdots, r$ such that $s_{i_1}s_{i_2} \cdots s_{i_t}$ is a reduced expression of y. This implies that

$$N_s(y) \leq N_s(w), \quad \text{for any } y \leq w \text{ in } W \text{ and } s \in S.$$

So by Theorem 1, our result follows. □

References