Partial matrices all of whose completions have the same spectrum

Zejun Huang

School of Sciences, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

huangzejun@yahoo.cn

Xingzhi Zhan*

Department of Mathematics, East China Normal University, Shanghai 200241, China

zhan@math.ecnu.edu.cn

Abstract

We characterize the square partial matrices over a field all of whose completions have the same spectrum, and determine the maximum number of indeterminates in such partial matrices of a given order as well as the matrices that attain this maximum number.

Key words. Partial matrix, completion, spectrum, characteristic polynomial

AMS subject classifications. 15A18, 15A54, 15A99

1 Introduction

A partial matrix over a set Ω is a matrix in which some entries all from Ω are specified and the other entries are free to be chosen from Ω. A completion of a partial matrix over Ω is a specific choice of values from Ω for its unspecified entries. A completion may also mean

*Corresponding author. The author’s research was supported by the NSFC grant 10971070.
a completed matrix of a partial matrix. We call the unspecified entries indeterminates since they are free to range over \(\Omega \).

Denote by \(M_n(\Omega) \) the set of \(n \times n \) matrices whose entries are from a given set \(\Omega \). We call elements in \(\Omega \) constants and call matrices in \(M_n(\Omega) \) constant matrices, in contrast to indeterminates and partial matrices respectively.

Let \(A \) be a matrix of order \(n \) over a field \(F \). The characteristic polynomial \(f(x) \) of \(A \) has \(n \) roots \(\lambda_1, \ldots, \lambda_n \) (multiplicities counted) in the algebraic closure of \(F \), more precisely, in the splitting field of \(f(x) \). The elements \(\lambda_1, \ldots, \lambda_n \) are called the eigenvalues of \(A \) and the set \(\{\lambda_1, \ldots, \lambda_n\} \) is called the spectrum of \(A \). Note that if \(A \) has repeated eigenvalues then its spectrum is a multi-set. Clearly, two matrices over a field have the same spectrum if and only if they have the same characteristic polynomial.

In this paper we characterize the square partial matrices over a field all of whose completions have the same spectrum, and determine the maximum number of indeterminates in such partial matrices of a given order as well as the matrices that attain this maximum number. In [2] and [3], the partial matrices over a field all of whose completions have the same determinant, have a bounded rank or have the same rank are studied.

2 Main results

Denote by \(F[x_1, \ldots, x_k] \) the ring of polynomials in the indeterminates \(x_1, \ldots, x_k \) over the field \(F \). We will need the following combinatorial Nullstellensatz of Alon [1] whose proof can also be found in [4, p.330].

Lemma 1 Let \(F \) be a field and let \(f \in F[x_1, \ldots, x_k] \) be a polynomial of degree \(d \) which contains a nonzero coefficient at \(x_1^{d_1} \cdots x_k^{d_k} \) with \(d_1 + \cdots + d_k = d \). If \(S_1, \ldots, S_k \) are subsets of \(F \) such that \(|S_i| > d_i \) for all \(i = 1, \ldots, k \), then there exists \(a_1 \in S_1, \ldots, a_k \in S_k \) such that \(f(a_1, \ldots, a_k) \neq 0 \).

Let \(A \) be a partial matrix over a set \(\Omega \). If \(\Delta \) is a subset of \(\Omega \), then a completion of \(A \) over \(\Delta \) means that we choose values from \(\Delta \) for the indeterminates of \(A \).

Lemma 2 Let \(F \subseteq E \) be a field extension, and \(A \) be a square partial matrix over \(E \). Then all the completions of \(A \) over \(F \) have the same determinant if and only if all the completions of \(A \) over \(E \) have the same determinant.
Proof. The sufficiency is trivial. We prove the necessity. Suppose that all the completions of \(A \) over \(F \) have the same determinant. Let \(x_1, x_2, \ldots, x_k \) be the indeterminates in \(A \). Then \(\det A \) is a polynomial \(f(x_1, \ldots, x_k) \) over \(E \) in which the degree of each \(x_i \) is at most 1 for \(i = 1, 2, \ldots, k \). The condition that all the completions of \(A \) over \(F \) have the same determinant implies that \(f(x_1, \ldots, x_k) \) assumes a constant value \(c \) for \(x_i \in F \). Let \(g(x_1, \ldots, x_k) = f(x_1, \ldots, x_k) - c \). Then \(g(x_1, \ldots, x_k) = 0 \) for all \(x_i \in F \). Since \(|F| \geq 2 \), applying Lemma 1 we deduce that \(g \) is the zero polynomial. Hence \(f \) is a constant polynomial, that is, all the completions of \(A \) over \(E \) have the same determinant.

Lemma 3 Let \(A \) be a square partial matrix over a field \(F \). If all the completions of \(A \) have the same spectrum, then all the diagonal entries of \(A \) are constants from \(F \).

Proof. Since all the completions of \(A \) have the same spectrum, all the completions of \(A \) have the same trace. It follows that all the diagonal entries of \(A \) must be constants.

The following lemma is a special case of [2, Theorem 10]

Lemma 4 Let \(F \) be a field with at least \(n + 1 \) elements. Let \(A \) be an \(n \times n \) partial matrix over \(F \). Then all the completions of \(A \) have the same nonzero determinant if and only if there exists a nonsingular constant matrix \(T \in M_n(F) \) and a permutation matrix \(Q \in M_n(F) \) such that \(TAQ \) is an upper triangular matrix with nonzero constant diagonal entries.

Let \(F \) be a field and \(x \) be a given indeterminate transcendental over \(F \). We denote by \(F(x) \) the field of rational functions in \(x \) over \(F \), i.e., the field

\[
F(x) = \left\{ \frac{f(x)}{g(x)} : f(x), g(x) \in F[x], g(x) \neq 0 \right\}
\]

Note that \(F \subseteq F(x) \) is a field extension. Denote by \(I \) the identity matrix whose order will be clear from the context.

Theorem 5 Let \(F \) be a field and \(x \) be an indeterminate transcendental over \(F \). Let \(A \) be an \(n \times n \) partial matrix over \(F \). Then all the completions of \(A \) have the same spectrum if and only if there exists a nonsingular matrix \(T \in M_n(F(x)) \) and a permutation matrix \(Q \in M_n(F) \) such that \(T(xI - A)Q \) is an upper triangular matrix with nonzero diagonal entries from \(F(x) \).
Proof. By Lemma 3, $xI - A$ is a partial matrix over $F(x)$. Thus all the completions of A over F have the same spectrum if and only if all the completions of $xI - A$ over F have the same determinant. By Lemma 2, this is equivalent to that all the completions of $xI - A$ over $F(x)$ have the same determinant. Note that $|F(x)| = \infty > n + 1$ and that as a polynomial, $\det(xI - A)$ is always nonzero. Applying Lemma 4 to $xI - A$ and the field $F(x)$ we complete the proof.

As in [2], Theorem 5 provides an algorithm to decide whether all the completions of a given partial matrix A have the same spectrum. This is the case if and only if $xI - A$ can be transformed to an upper triangular form with nonzero constant diagonal entries by the following three elementary operations: (1) permutation of columns; (2) permutation of rows; (3) addition of a scalar multiple of one row to another row.

For example: let

$$A = \begin{bmatrix} 1 & 1 & -1 & 0 \\ -1 & 1 & -1 & -1 \\ -1 & -1 & 1 & -1 \\ y & -1 & -1 & 1 \end{bmatrix}.$$

Then

$$xI - A = \begin{bmatrix} x - 1 & -1 & 1 & 0 \\ 1 & x - 1 & 1 & 1 \\ 1 & 1 & x - 1 & 1 \\ -y & 1 & 1 & x - 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 1 & x - 1 \\ 1 & x - 1 & 1 & 1 \\ 1 & 1 & x - 1 & 1 \\ x - 1 & 1 & 1 & -y \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & x - 1 & 1 \\ 0 & x - 2 & 2 - x & 0 \\ 0 & -1 & 1 & x - 1 \\ 0 & 2 - x & 1 - (x - 1)^2 & -y - x + 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & x - 1 & 1 \\ 0 & x - 2 & 2 - x & 0 \\ 0 & -1 & 1 & x - 1 \\ 0 & 0 & -x^2 + x + 2 & -y - x + 1 \end{bmatrix}$$

We conclude that all completions of A have the same spectrum. Here the operations we performed are: interchanging column 1 and column 4; interchanging row 1 and row 3; adding -1 times row 1 to row 2 and adding $1 - x$ times row 1 to row 4; adding $1/(x - 2)$ times row 2 to row 3 and adding row 2 to row 4; interchanging row 3 and row 4.
Next we study the maximum number of indeterminates in the partial matrices all of whose completions have the same spectrum. We will use the following lemma [2, Theorem 12]. The noun “diagonal” will always mean the main diagonal.

Lemma 6 Let F be a field with at least $n+1$ elements. Let A be a partial matrix of order n over F all of whose completions are nonsingular. Then the number of indeterminates of A is less than or equal to $n(n−1)/2$. This maximum number is attained if and only if there exist permutation matrices P, Q such that $P AQ$ is upper triangular with nonzero constant diagonal entries and with all the entries above the diagonal being indeterminates.

Theorem 7 Let F be a field and let A be an $n \times n$ partial matrix over F all of whose completions have the same spectrum. Then the number of indeterminates of A is less than or equal to $n(n−1)/2$. This maximum number is attained if and only if A is permutation similar to an upper triangular matrix with constant diagonal entries and with all the entries above the diagonal being indeterminates.

Proof. Denote by $f(G)$ the number of indeterminates in a partial matrix G. Let x be an indeterminate transcendental over F. From the proof of Theorem 5 we know that all the completions of A over F have the same spectrum if and only if all the completions of $x I - A$ over $F(x)$ have the same nonzero determinant. Applying Lemma 6 to $x I - A$ and $F(x)$, we have

$$f(A) = f(x I - A) \leq n(n−1)/2$$

and equality holds if and only if there exist permutation matrices P, Q such that $P(x I - A)Q$ is upper triangular with nonzero constant diagonal entries from $F(x)$ and with all the entries above the diagonal being indeterminates.

Now suppose $f(A) = n(n−1)/2$. Then there are permutation matrices P, Q satisfying the conditions stated above. Since $P(x I - A)Q = xPQ - PAQ$ and $P(x I - A)Q$ is upper triangular, the permutation matrix PQ must be upper triangular. But an upper triangular permutation matrix is just the identity matrix. Hence $PQ = I$, i.e., $Q = P^T$. Then $P(x I - A)Q = x I - PAP^T$. It follows that PAP^T is an upper triangular matrix with constant diagonal entries from F and with all the entries above the diagonal being indeterminates. \qed
References

