Extremal sparsity of the companion matrix of a polynomial

Chao Ma, Xingzhi Zhan†
Department of Mathematics
East China Normal University
Shanghai 200241, China

Abstract

Let C be the companion matrix of a monic polynomial p over a field F. We prove that if A is a matrix whose entries are rational functions of the coefficients of p over F and whose characteristic polynomial is p, then A has at least as many nonzero entries as C.

Key words. Polynomial, companion matrix, sparsity, spanning branching, transcendence degree.

Mathematics subject classifications. 15A18, 12E05, 05C50, 05C05

The companion matrix of a monic polynomial

$$p(x) = x^n + a_1x^{n-1} + \cdots + a_{n-1}x + a_n$$

over a field is defined to be

$$C(p) = \begin{bmatrix} 0 & 0 & \cdots & 0 & -a_n \\ 1 & 0 & \cdots & 0 & -a_{n-1} \\ 0 & 1 & \cdots & 0 & -a_{n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_1 \end{bmatrix}.$$
It is well known [5, p.147] that the characteristic polynomial of \(C(p) \) is \(p(x) \). Because of this relation, companion matrices can be used to study properties of polynomials. For example, matrix tools are used in [7] to locate the roots of a complex polynomial via its companion matrix.

The companion matrix \(C(p) \) is very sparse, i.e., it has many zero entries. If we regard the coefficients \(a_1, \ldots, a_n \) of \(p(x) \) as distinct indeterminates, then \(C(p) \) has \(2^n - 1 \) nonzero entries. We will show that the companion matrix is the sparsest in a sense to be described below.

Let \(F \) be a field and \(x_1, \ldots, x_n \) be distinct indeterminates. We denote by \(F[x_1, \ldots, x_n] \) the ring of polynomials in \(x_1, \ldots, x_n \) over \(F \), and by \(F(x_1, \ldots, x_n) \) the field of rational functions in \(x_1, \ldots, x_n \) over \(F \):\[
F(x_1, \ldots, x_n) = \left\{ \frac{f}{g} \middle| f, g \in F[x_1, \ldots, x_n], g \neq 0 \right\}.
\]
Denote by \(M_n(E) \) the set of \(n \times n \) matrices whose entries are elements of a given field \(E \).

Our main result is the following theorem.

Theorem 1. Let \(F \) be a field, \(a_1, \ldots, a_n \) be distinct indeterminates, and \(A \in M_n(F(a_1, \ldots, a_n)) \). If the characteristic polynomial of \(A \) is
\[
x^n + a_1x^{n-1} + \cdots + a_{n-1}x + a_n,
\](1)
then \(A \) has at least \(2^n - 1 \) nonzero entries.

To prove Theorem 1 we need several lemmas.

Lemma 2. The polynomial in (1) is irreducible over \(F(a_1, \ldots, a_n) \).

Proof. Let \(p(x) = x^n + a_1x^{n-1} + \cdots + a_{n-1}x + a_n \). If \(n = 1 \), \(p(x) \) is obviously irreducible. Now suppose \(n \geq 2 \), and we first show that \(p(x) \) has no factors of degree 1. Otherwise \(p(x) \) has a root \(f/g \) where \(f, g \in F[a_1, \ldots, a_n] \) with \(g \neq 0 \). Then \(f^n/g^n + a_1f^{n-1}/g^{n-1} + \cdots + a_{n-1}f/g + a_n = 0 \). Hence
\[
f^n + a_1f^{n-1}g + \cdots + a_{n-1}fg^{n-1} + a_ng^n = 0.\tag{2}
\]
Note that \(f \neq 0 \). For a nonzero polynomial \(h \in F[a_1, \ldots, a_n] \) we use \(\deg_{a_n} h \) to denote the degree of \(a_n \) in \(h \). Let \(\deg_{a_n} f = d \) and \(\deg_{a_n} g = e \), and let \(u \) be the polynomial on the left-hand side of (2). If \(d \leq e \) then
\[
\deg_{a_n} u = \deg_{a_n} (a_ng^n) = ne + 1 \geq 1,
\]
have every nonzero \(v \) the largest subscript such that \(s \). Note that if \(b = 0 \) and if \(b \) where \(0 = 0 + (b_1, \ldots, a_n) \) with \(b_0 = c_0 = 1 \). Since we have proved that \(p(x) \) has no factors of degree 1, 2 \(\leq k \leq n - 2 \). Given \(h \in F[a_1, \ldots, a_n] \), we may write \(h = h_0 + a_n + h_2a_n^2 + \cdots + h_qa_n^q \) with each \(h_i \in F[a_1, \ldots, a_n-1] \). Thus, if \(h \neq 0 \), \(h = a_n^m w \) for some nonnegative integer \(m \) and \(w \in F[a_1, \ldots, a_n] \) with \(w(a_1, \ldots, a_n, 0) \neq 0 \). Hence every nonzero \(v \in F(a_1, \ldots, a_n) \) can be written as \(v = v_1/a_n^r \) where \(r \) is an integer, \(v_1 \in F(a_1, \ldots, a_n) \) and \(v_1(a_1, \ldots, a_n, 0) \neq 0 \). Now let

\[
 b_i = \frac{f_i}{a_i^n}, \quad c_j = \frac{g_j}{a_j^n}
\]

where \(f_i, g_j \in F(a_1, \ldots, a_n), s_i \) and \(t_j \) are integers such that if \(b_i \neq 0 \) then \(f_i(a_1, \ldots, a_n, 0) \neq 0 \) and if \(b_i = 0 \) then \(f_i = 0 \) and \(s_i = -1 \), and if \(c_j \neq 0 \) then \(g_j(a_1, \ldots, a_n, 0) \neq 0 \) and if \(c_j = 0 \) then \(g_j = 0 \) and \(t_j = -1 \). Since \(b_0 = c_0 = 1 \), we set \(f_0 = g_0 = 1 \) and \(s_0 = t_0 = 0 \).

We will show that there are no positive integers among \(s_0, \ldots, s_k, t_0, \ldots, t_{n-k} \). To the contrary we first suppose that there is at least one positive integer among \(s_0, \ldots, s_k \). Let \(i_0 \) be the largest subscript such that \(s_{i_0} = \max\{s_0, \ldots, s_k\} \). Then \(s_{i_0} \geq 1 \), \(b_{i_0} \neq 0 \) and \(f_{i_0}(a_1, \ldots, a_n, 0) \neq 0 \). We distinguish two cases.

Case 1. There is at least one nonnegative integer among \(t_1, \ldots, t_{n-k} \). Let \(j_0 \) be the largest subscript such that \(t_{j_0} = \max\{t_0, \ldots, t_{n-k}\} \). Then \(t_{j_0} \geq 0 \), \(c_{j_0} \neq 0 \) and \(g_{j_0}(a_1, \ldots, a_n, 0) \neq 0 \). Comparing the coefficients of \(x^{n-i_0-j_0} \) on both sides of (3) we have

\[
a_{i_0+j_0} = \sum_{i+j=i_0+j_0} b_i c_j = \sum_{i+j=i_0+j_0} \frac{f_i g_j}{a_i^{n-i_0+j_0}}.
\]

Note that \(s_{i_0} + t_{j_0} \geq s_i + t_j \) for all \(i, j \) with \(i + j = i_0 + j_0 \) and equality holds if and only if \(i = i_0 \) and \(j = j_0 \). Multiplying both sides of (4) by \(a_n^{s_{i_0}+t_{j_0}} \) and then setting \(a_n = 0 \) we obtain

\[
 0 = f_{i_0}(a_1, \ldots, a_n, 0) g_{j_0}(a_1, \ldots, a_n, 0),
\]
a contradiction.

Case 2. \(t_1, \ldots , t_{n-k} \) are all negative integers. Comparing the coefficients of \(x^{n-i_0} \) on both sides of (3) we have

\[
a_{i_0} = \sum_{i+j=i_0} b_i c_j = \sum_{i+j=i_0} \frac{f_i g_j}{a_n^{n+i}}.
\]

(5)

Note that \(s_{i_0} > s_i + t_j \) for all \(i = 0, 1, \ldots , k \) and \(j = 1, \ldots , n-k \). Multiplying both sides of (5) by \(a_{s_{i_0}} \) and then setting \(a_n = 0 \) we obtain \(0 = f_{i_0}(a_1, \ldots , a_{n-1}, 0) \), a contradiction.

Thus we have proved that \(s_0, \ldots , s_k \) are all non-positive integers. In the same way we can prove that \(t_0, \ldots , t_{n-k} \) are all non-positive integers. Consequently, all the \(b_i(a_1, \ldots , a_{n-1}, 0) \) and \(c_j(a_1, \ldots , a_{n-1}, 0) \) are well defined and they are elements of \(F(a_1, \ldots , a_{n-1}) \). Denote \(\tilde{b}_i = b_i(a_1, \ldots , a_{n-1}, 0) \) and \(\tilde{c}_j = c_j(a_1, \ldots , a_{n-1}, 0) \). Setting \(a_n = 0 \) in (3) we have

\[
x^n + a_1x^{n-1} + \cdots + a_{n-1}x = \left(\sum_{i=0}^k \tilde{b}_i x^{k-i} \right) \left(\sum_{j=0}^{n-k} \tilde{c}_j x^{n-k-j} \right).
\]

(6)

Considering the constant term we get \(\tilde{b}_k \tilde{c}_{n-k} = 0 \). Hence \(\tilde{b}_k = 0 \) or \(\tilde{c}_{n-k} = 0 \). In either case (6) shows that \(x^n + a_1x^{n-2} + \cdots + a_{n-2}x + a_{n-1} \) is reducible over \(F(a_1, \ldots , a_{n-1}) \), which contradicts the induction hypothesis. This proves that \(p(x) \) is irreducible. \(\square \)

We will use a little graph theory [1, 9]. A branching is an oriented tree having a root of in-degree 0 and all other vertices of in-degree 1. A spanning branching of a digraph is a branching that includes all vertices of the digraph. If \((a, b)\) is an arc of a digraph, then \(a\) is called an in-neighbor of \(b\) and \(b\) is called an out-neighbor of \(a\). The following lemma is well known ([1, p.108] or [9, p.90]) and easy to prove.

Lemma 3. In a strongly connected digraph, every vertex is the root of a spanning branching.

We denote by \(D(A) \) the digraph of a matrix \(A = (a_{ij}) \) of order \(n \). The vertices of \(D(A) \) are \(1, 2, \ldots , n \) and \((s, t)\) is an arc if and only if \(a_{st} \ne 0 \). \(A(i, j) \) will mean the entry of the matrix \(A \) in row \(i \) and column \(j \).

Lemma 4. Let \(E \) be a field. If the digraph of a matrix \(A \in M_n(E) \) has a spanning branching whose arcs are \((i_1, j_1), \ldots , (i_{n-1}, j_{n-1})\), then there exists a nonsingular diagonal matrix \(G \in M_n(E) \) such that \(GAG^{-1}(i_k, j_k) = 1 \) for \(k = 1, \ldots , n-1 \).

Proof. Let \(B \) be the spanning branching of \(D(A) \). We renumber the vertices of \(B \) as follows. The root of \(B \) is 1. If 1 has \(t \) out-neighbors, number them as \(2, 3, \ldots , t + 1 \)
in any order. Then number the out-neighbors of 2, 3, . . . , t + 1 successively. Continuing in this way we will finally renumber all the vertices of D(A), since B is a spanning branching. Thus we obtain a new digraph D′ with a spanning branching B′. The arcs of B′ are (r1, 2), (r2, 3), . . . , (rn−1, n) which satisfy the key condition 1 ≤ rk ≤ k for each k = 1, 2, . . . , n − 1. In particular, r1 = 1. Moreover, there is a permutation matrix P such that D′ = D(PAPT) where PT denotes the transpose of P. Let PAPT = (a′ij). Then a′i,k+1 ̸= 0 for k = 1, . . . , n − 1.

We define n nonzero elements d1, . . . , dn successively by setting d1 = 1, and dk+1 = dk a′rk,k+1 for k = 1, . . . , n−1. This is well defined since 1 ≤ rk ≤ k. Let H = diag(d1, d2, . . . , dn). We have HAPPTH−1(rk, k + 1) = 1 for k = 1, . . . , n − 1. Let G = PTHP. Then G is a nonsingular diagonal matrix and GAG−1(i, jk) = 1 for k = 1, . . . , n − 1. □

Results similar to Lemma 4 are known ([3, p.259] and [8, p.3]).

We will use a little algebra [6]. Let F ⊆ E be a field extension. We denote by trd(E/F) the transcendence degree of E over F. Let a1, . . . , an be distinct indeterminates. Since {a1, . . . , an} is a transcendence basis of F(a1, . . . , an) over F [6, p.317], we have trd(F(a1, . . . , an)/F) = n.

Given e1, . . . , ek ∈ E, we denote by F(e1, . . . , ek) the subfield of E defined by

\[F(e_1, \ldots, e_k) = \left\{ \frac{f(e_1, \ldots, e_k)}{g(e_1, \ldots, e_k)} \mid f, g \in F[x_1, \ldots, x_k], g(e_1, \ldots, e_k) \neq 0 \right\}. \]

It is easy to show that trd(F(e1, . . . , ek)/F) ≤ k.

Proof of Theorem 1. Recall that a square matrix R is said to be reducible if there exists a permutation matrix P such that PRP′ is of the form

\[
\begin{bmatrix}
R_1 & 0 \\
R_2 & R_3
\end{bmatrix}
\]

where R1 and R3 are square matrices of order at least 1, i.e., they do appear, and 0 is a zero matrix. A square matrix that is not reducible is called irreducible. Obviously, the characteristic polynomial of a reducible matrix is reducible. Now by Lemma 2, the matrix A is irreducible. Since the digraph of an irreducible matrix is strongly connected [4, p.55], D(A) is strongly connected. By Lemma 3, D(A) has a spanning branching. Then by Lemma 4, there exists a nonsingular diagonal matrix G ∈ Mn(F(a1, . . . , an)) such that A′ = GAG−1 has at least n − 1 entries equal to 1.

Suppose that A′ has precisely m nonzero entries. Note that A′ and A have the same characteristic polynomial in (1) and have the same number m of nonzero entries. Let the
nonzero entries of A' be $e_1, e_2, \ldots, e_{m-n+1}, 1, \ldots, 1$. Of course, every $e_j \in F(a_1, \ldots, a_n)$ and hence $F(e_1, \ldots, e_{m-n+1}) \subseteq F(a_1, \ldots, a_n)$. On the other hand, since each of the coefficients a_1, \ldots, a_n of the polynomial in (1) is the value of a polynomial over F in the entries of A', we have $F(a_1, \ldots, a_n) \subseteq F(e_1, \ldots, e_{m-n+1})$. Hence $F(e_1, \ldots, e_{m-n+1}) = F(a_1, \ldots, a_n)$.

Finally from

$$n = \text{trd}(F(a_1, \ldots, a_n)/F) = \text{trd}(F(e_1, \ldots, e_{m-n+1})/F) \leq m - n + 1$$

we obtain $m \geq 2n - 1$. □

In the proof of Theorem 1 we have used a method in [2] and [3].

Acknowledgment. The authors are grateful to Dr. Lingfei Jin for helpful discussions.

References

