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Abstract7

We first characterize submatrices of a unimodular integral matrix. We then prove that if n entries of an8
n × n partial integral matrix are prescribed and these n entries do not constitute a row or a column, then this9
matrix can be completed to a unimodular matrix. Consequently an n × n partial integral matrix with n − 110
prescribed entries can always be completed to a unimodular matrix.11
© 2005 Published by Elsevier Inc.12
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1. Introduction and statement of results15

For simplicity of presentation, we will consider only matrices over the rational integers Z, but16
all the results have obvious generalizations to matrices over a principal ideal ring. Let Mn(Z)17
be the ring of n × n matrices over Z. A matrix A ∈ Mn(Z) is called unimodular if det A = ±1.18
Being units of Mn(Z), such matrices are used to define the equivalence relation between integral19
quadratic forms [1, p. 127]. It is known [7, p. 15] that if a1, . . . , an are relatively prime integers20
then there is a unimodular matrix with (a1, . . . , an) as any prescribed row. This result plays a key21
role in the proofs of the Hermite normal form and the Smith normal form [7]. A row is a special22
case of submatrices. We will prove the following more general result.23
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Theorem 1. Let r, s, n be positive integers with r, s � n. An r × s integral matrix A is a submatrix24
of some unimodular matrix of order n if and only if A has at least r + s − n invariant factors25
equal to 1.26

Here we make the convention that if r + s � n then all r × s matrices satisfy the condition in27
Theorem 1. To be definite, throughout we take invariant factors and determinantal divisors to be28
nonnegative. A partial matrix is one in which some entries are prescribed and the other entries29
are to be chosen. Since row or column permutations do not change unimodularity, we can put30
the submatrix A in any prescribed place and Theorem 1 may be regarded as a matrix completion31
result.32

Any n integers not relatively prime cannot be a row or a column of a unimodular matrix of33
order n. Our next result shows that these are the only two cases which should be excluded.34

Theorem 2. Let a1, . . . , an be prescribed integers. Let (it , jt ), t = 1, . . . , n, be prescribed dif-35
ferent positions in an n × n matrix and these positions do not constitute a row or a column.36
Then there exists a unimodular matrix of order n with the entry at in the position (it , jt ) for37
t = 1, . . . , n.38

Note that the number n of prescribed entries in Theorem 2 is best possible. Consider the39
following partial matrix:40 

2 2 ?
2 2 ?
? ? ?


 ,

where the ?’s are free entries. Any of the prescribed 4 = 3 + 1 entries do not constitute one41
row or one column. Since the determinant of this matrix is always even, no matter what the ?’s42
are, it cannot be completed to a unimodular matrix. Theorem 1 will be needed in the proof of43
Theorem 2.44

An immediate consequence of Theorem 2 is the following corollary.45

Corollary 3. Let a1, . . . , an−1 be prescribed integers and (it , jt ), t = 1, . . . , n − 1, be pre-46
scribed different positions in an n × n matrix. Then there exists a unimodular matrix of order n47
with the entry at in the position (it , jt ) for t = 1, . . . , n − 1.48

We remark that there are results for eigenvalues of a flavor similar to that of Theorem 2 and49
Corollary 3 [2–4,6,8,9].50

2. Proofs51

Denote by Mr,s(Z) the set of r × s integral matrices. For A ∈ Mr,s(Z) we denote the j th deter-52
minantal divisor of A by dj (A), j = 1, . . . , min{r, s}, and the j th invariant factor by sj (A), j =53
1, . . . , rank A. We will need the following lemma.54

Lemma 4. Let A ∈ Mr,s(Z) be a submatrix of B ∈ Mn(Z) and r + s − n � 1. Then dr+s−n(A)|55
det B.56
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Proof. Denote p = min{r, s}, k = r + s − n. Then p � k. Without loss of generality (by row57
or column permutations if necessary), we may assume that A is in the left-upper corner of B.58
Let UAV = diag(s1, . . . , sp)r×s = D be the Smith normal form where U, V are unimodular59
matrices, s1, . . . , sm are the invariant factors and sm+1 = · · · = sp = 0, m = rank A. Throughout60
we denote by It the identity matrix of order t . Denote61

B̃ = diag(U, In−r )B diag(V , In−s) =
(

D B1
B2 B3

)
= (bij )n×n.

Since r + s = n + k, by König’s theorem [5, p. 73] every diagonal (b1,σ (1), . . . , bn,σ (n)) of B̃62
contains at least k entries of D where σ is a permutation of 1, . . . , n. Therefore if

∏n
i=1 bi,σ (i) /= 0,63

then
∏n

i=1 bi,σ (i) = w
∏k

t=1 sit for some integer w and 1 � i1 < · · · < ik � p. Since sj |sj+1, j =64
1, . . . , p − 1, we have st |sit , t = 1, . . . , k. Hence65

dk(A) =
( k∏

t=1

st

)∣∣∣∣
(

w

k∏
t=1

sit

)

and we have dk(A)| ∏n
i=1 bi,σ (i) for any σ . So dk(A)|det B̃ = ±det B. �66

Proof of Theorem 1. Suppose A ∈ Mr,s(Z) is a submatrix of a unimodular matrix B ∈ Mn(Z).67
If r + s > n, by Lemma 468

dr+s−n(A)|det B = ±1.

Thus dr+s−n(A) = 1. Since
∏r+s−n

j=1 sj (A) = dr+s−n(A), we must have s1(A) = · · · = sr+s−n69
(A) = 1. So A has at least r + s − n invariant factors equal to 1.70

Conversely let A ∈ Mr,s(Z). Using transpose we need consider only the case r � s. If r + s �71

n we show that A can always be completed to a unimodular matrix of order n. Let A = U
(

Ds

0

)
V72

be the Smith normal form decomposition with U, V unimodular and Ds diagonal of order s.73
Consider the matrix74

B =




Ds 0 −Is 0
0 Ir−s 0 0

Is − Ds 0 Is 0
0 0 0 In−r−s


 ∈ Mn(Z),

where the zero blocks are of appropriate sizes and a matrix with zero column or row number does75
not appear. By adding the third block row to the first block row we see that B is unimodular. Thus76

diag(U, In−r )B diag(V , In−s)

is unimodular and has A as a submatrix.77
If r + s > n, let k = r + s − n. Suppose A has at least k invariant factors equal to 1. Then A78

has the following Smith normal form decomposition:79

A = U


Ik 0

0 Dn−r

0 0


 V

with U, V unimodular and Dn−r diagonal of order n − r . Consider the matrix80

G =




Ik 0 0 0
0 Dn−r 0 −In−r

0 0 Ir−s 0
0 In−r − Dn−r 0 In−r


 ∈ Mn(Z).
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By adding the fourth block row to the second block row we see that G is unimodular. Thus81

diag(U, In−r )G diag(V , In−s)

is unimodular and has A as a submatrix. This completes the proof. �82

Proof of Theorem 2. We use induction on the order n. The case n = 2 is easily checked to be83
true. We assume that the assertion holds for matrices of order n − 1 and prove the result for84
matrices of order n � 3. There are two cases.85

Case (i). There are n − 1 prescribed positions in one row or column.86
We consider the row case. The column case is similar. By row or column permutations if87

necessary, without loss of generality we may assume that (it , jt ) = (1, t), t = 2, . . . , n. Then88
apart from row and column permutations there are essentially the following two situations.89

Subcase i(1). (i1, j1) = (2, 1). The matrix90 


a1a2 + 1 a2 a3 · · · an

a1 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




is unimodular and has the prescribed entries in the prescribed positions.91
Subcase i(2). (i1, j1) = (2, 2). We choose any n − 2 prime numbers p1, . . . , pn−2 each of92

which is greater than max1�j�n|aj |. Let93

B =
(

a2 a3 · · · an

a1 p1 · · · pn−2

)
.

Then s1(B) = d1(B) = 1. By Theorem 1, the 2 × (n − 1) matrix B can be completed to a uni-94
modular matrix of order n. So there exist column vectors α, β and matrix F such that95 (

α B

β F

)
∈ Mn(Z)

is a unimodular matrix, which satisfies the requirement.96
Case (ii). Every row or column of a matrix of order n contains at most n − 2 prescribed97

positions.98
There is at least one column, say, the last column which contains at most one prescribed99

position. We distinguish the following two cases.100
Subcase ii(1). The last column has no prescribed positions.101
If the last row has at least one prescribed position, then there are at most n − 1 prescribed102

positions (it , jt ) with it � n − 1 and jt � n − 1. No row or column of a matrix of order n − 1 is103
fully prescribed by the general assumption of Case (ii). Thus by the induction hypothesis there104
exists a unimodular matrix A′ of order n − 1 with the prescribed entries at in the positions (it , jt )105
for all (it , jt ) with it � n − 1 and jt � n − 1. Let β be the (n − 1)-dimensional row vector whose106
jt th component is equal to at for those it = n and whose other entries are zero. Then the matrix107 (

A′ 0
β 1

)
is unimodular and satisfies the requirement.

108
If the last row has no prescribed positions, then by the induction hypothesis these exists a109

unimodular matrix H ′ = (hij ) of order n − 1 with the n − 1 prescribed entries at in the positions110
(it , jt ), respectively, for t = 1, . . . , n − 1. Note that the position (in, jn) is also in H ′. Let γ be111
the (n − 1)-dimensional column vector with the inth component equal to an − hin,jn and with112
other components equal to zero. Now consider the matrix



U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

LAA 8716
11/11/2005 DISK used ARTICLE IN PRESS No. of pages: 5, Model 1+

X. Zhan / Linear Algebra and its Applications xxx (2005) xxx–xxx 5

113

H =
(

H ′ γ

0 1

)
∈ Mn(Z).

Let G be the matrix obtained from H by adding the last column to the jnth column. Then G is114
unimodular and has the entries at in the positions (it , jt ) for t = 1, . . . , n.115

Subcase ii(2). The last column has exactly one prescribed position.116
By row permutations if necessary, we may assume that (in, jn) = (n, n). Then there are at most117

n − 1 prescribed positions (it , jt ) with it � n − 1 and jt � n − 1. By the induction hypothesis118
there is a unimodular matrix Q of order n − 1 with at in (it , jt ) for all t satisfying it � n − 1 and119
jt � n − 1. There is at least one position (k, n) which is not prescribed. We will show that there120
exist an (n − 1)-dimensional row vector β and an (n − 1)-dimensional column vector γ such that121
the matrix122

W =
(

Q γ

β an

)
∈ Mn(Z)

is unimodular and has the prescribed entries in the prescribed positions. For the latter property we123
need only set β(jt ) = at if it = n and 1 � jt � n − 1, set β(k) = x to be chosen, and set other124
components of β to be zero. By Schur complement we have det W = (det Q)(an − βQ−1γ ). So125
to make W unimodular it suffices to require an − βQ−1γ = 1. We first show that we can choose126
x such that the components of βQ−1 are relatively prime. Note that Q−1 is also unimodular and127
hence the components q1, . . . , qn−1 of the kth row of Q−1 are relatively prime. Let128

βQ−1 = x(q1, . . . , qn−1) + (c1, . . . , cn−1).

There are integers u1, . . . , un−1 such that
∑n−1

i=1 uiqi = 1. Set x = 1 − ∑n−1
i=1 uici . Then

∑n−1
i=1129

ui(xqi + ci) = 1. So the components of βQ−1 are relatively prime. Consequently there exists an130
integral column vector γ such that βQ−1γ = an − 1. Thus W is unimodular. This completes the131
proof. �132

Proof of Corollary 3. We can always prescribe one more position (in, jn) such that the prescribed133
n positions do not constitute one row or one column, and prescribe 1 in (in, jn). Then apply134
Theorem 2. �135
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