

Available online at www.sciencedirect.com SCIENCE ODIRECT.

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications xxx (2005) xxx-xxx

www.elsevier.com/locate/laa

Completion of a partial integral matrix to a unimodular matrix[☆]

Xingzhi Zhan 3 Department of Mathematics, East China Normal University, Shanghai 200062, China 4 5 Received 25 February 2005; accepted 15 October 2005 Submitted by H. Schneider 6

7 Abstract

8

9

10

11

15

2

- We first characterize submatrices of a unimodular integral matrix. We then prove that if n entries of an $n \times n$ partial integral matrix are prescribed and these n entries do not constitute a row or a column, then this matrix can be completed to a unimodular matrix. Consequently an $n \times n$ partial integral matrix with n-1prescribed entries can always be completed to a unimodular matrix.
- © 2005 Published by Elsevier Inc. 12
- AMS classification: 15A36; 11C20 13
- Keywords: Integral matrix; Unimodular matrix; Completion of matrices 14

1. Introduction and statement of results

- 16 For simplicity of presentation, we will consider only matrices over the rational integers \mathbb{Z} , but
- all the results have obvious generalizations to matrices over a principal ideal ring. Let $M_n(\mathbb{Z})$ 17
- be the ring of $n \times n$ matrices over \mathbb{Z} . A matrix $A \in M_n(\mathbb{Z})$ is called *unimodular* if det $A = \pm 1$. 18
- Being units of $M_n(\mathbb{Z})$, such matrices are used to define the equivalence relation between integral 19
- quadratic forms [1, p. 127]. It is known [7, p. 15] that if a_1, \ldots, a_n are relatively prime integers 20
- then there is a unimodular matrix with (a_1, \ldots, a_n) as any prescribed row. This result plays a key 21
- role in the proofs of the Hermite normal form and the Smith normal form [7]. A row is a special 22
- case of submatrices. We will prove the following more general result. 23

Supported by the NSFC grant 10571060. E-mail address: zhan@math.ecnu.edu.cn

No. of pages: 5, Model 1+

2 X. Zhan / Linear Algebra and its Applications xxx (2005) xxx–xxx

- **Theorem 1.** Let r, s, n be positive integers with $r, s \le n$. An $r \times s$ integral matrix A is a submatrix
- of some unimodular matrix of order n if and only if A has at least r + s n invariant factors equal to 1.
- Here we make the convention that if $r + s \le n$ then all $r \times s$ matrices satisfy the condition in
- 28 Theorem 1. To be definite, throughout we take invariant factors and determinantal divisors to be
- 29 nonnegative. A partial matrix is one in which some entries are prescribed and the other entries
- 30 are to be chosen. Since row or column permutations do not change unimodularity, we can put
- 31 the submatrix A in any prescribed place and Theorem 1 may be regarded as a matrix completion
- 32 result.
- Any n integers not relatively prime cannot be a row or a column of a unimodular matrix of order n. Our next result shows that these are the only two cases which should be excluded.
- **Theorem 2.** Let a_1, \ldots, a_n be prescribed integers. Let $(i_t, j_t), t = 1, \ldots, n$, be prescribed dif-
- 36 ferent positions in an $n \times n$ matrix and these positions do not constitute a row or a column.
- 37 Then there exists a unimodular matrix of order n with the entry a_t in the position (i_t, j_t) for
- 38 t = 1, ..., n.
- Note that the number n of prescribed entries in Theorem 2 is best possible. Consider the following partial matrix:

$$\begin{pmatrix} 2 & 2 & ? \\ 2 & 2 & ? \\ ? & ? & ? \end{pmatrix},$$

- 41 where the ?'s are free entries. Any of the prescribed 4 = 3 + 1 entries do not constitute one
- 42 row or one column. Since the determinant of this matrix is always even, no matter what the ?'s
- 43 are, it cannot be completed to a unimodular matrix. Theorem 1 will be needed in the proof of
- 44 Theorem 2.
- An immediate consequence of Theorem 2 is the following corollary.
- 46 **Corollary 3.** Let a_1, \ldots, a_{n-1} be prescribed integers and (i_t, j_t) , $t = 1, \ldots, n-1$, be pre-
- 47 scribed different positions in an $n \times n$ matrix. Then there exists a unimodular matrix of order n
- with the entry a_t in the position (i_t, j_t) for t = 1, ..., n 1.
- We remark that there are results for eigenvalues of a flavor similar to that of Theorem 2 and
- 50 Corollary 3 [2–4,6,8,9].
- 51 **2. Proofs**
- Denote by $M_{r,s}(\mathbb{Z})$ the set of $r \times s$ integral matrices. For $A \in M_{r,s}(\mathbb{Z})$ we denote the jth deter-
- 53 minantal divisor of A by $d_i(A)$, $j = 1, ..., \min\{r, s\}$, and the jth invariant factor by $s_i(A)$, j =
- $1, \ldots, \text{ rank } A$. We will need the following lemma.
- 55 **Lemma 4.** Let $A \in M_{r,s}(\mathbb{Z})$ be a submatrix of $B \in M_n(\mathbb{Z})$ and $r + s n \ge 1$. Then $d_{r+s-n}(A)$
- 56 det *B*.

- 57 **Proof.** Denote $p = \min\{r, s\}, k = r + s - n$. Then $p \ge k$. Without loss of generality (by row
- or column permutations if necessary), we may assume that A is in the left-upper corner of B. 58
- Let $UAV = \operatorname{diag}(s_1, \dots, s_p)_{r \times s} = D$ be the Smith normal form where U, V are unimodular 59
- matrices, s_1, \ldots, s_m are the invariant factors and $s_{m+1} = \cdots = s_p = 0$, m = rank A. Throughout 60
- we denote by I_t the identity matrix of order t. Denote 61

$$\widetilde{B} = \operatorname{diag}(U, I_{n-r}) B \operatorname{diag}(V, I_{n-s}) = \begin{pmatrix} D & B_1 \\ B_2 & B_3 \end{pmatrix} = (b_{ij})_{n \times n}.$$

- Since r + s = n + k, by König's theorem [5, p. 73] every diagonal $(b_{1,\sigma(1)}, \ldots, b_{n,\sigma(n)})$ of \widetilde{B} 62
- contains at least k entries of D where σ is a permutation of $1, \ldots, n$. Therefore if $\prod_{i=1}^n b_{i,\sigma(i)} \neq 0$, 63
- then $\prod_{i=1}^n b_{i,\sigma(i)} = w \prod_{t=1}^k s_{i_t}$ for some integer w and $1 \le i_1 < \cdots < i_k \le p$. Since $s_j | s_{j+1}, j = 1, \ldots, p-1$, we have $s_t | s_{i_t}, t = 1, \ldots, k$. Hence 64
- 65

$$d_k(A) = \left(\prod_{t=1}^k s_t\right) \left| \left(w \prod_{t=1}^k s_{i_t}\right)\right|$$

- and we have $d_k(A)|\prod_{i=1}^n b_{i,\sigma(i)}$ for any σ . So $d_k(A)|\det \widetilde{B} = \pm \det B$. \square 66
- **Proof of Theorem 1.** Suppose $A \in M_{r,s}(\mathbb{Z})$ is a submatrix of a unimodular matrix $B \in M_n(\mathbb{Z})$. 67
- If r + s > n, by Lemma 4 68

$$d_{r+s-n}(A)|\det B = \pm 1.$$

- Thus $d_{r+s-n}(A) = 1$. Since $\prod_{j=1}^{r+s-n} s_j(A) = d_{r+s-n}(A)$, we must have $s_1(A) = \cdots = s_{r+s-n}(A) = 1$. So A has at least r+s-n invariant factors equal to 1. 69
- 70
- Conversely let $A \in M_{r,s}(\mathbb{Z})$. Using transpose we need consider only the case $r \geqslant s$. If $r + s \leqslant$ 71
- n we show that A can always be completed to a unimodular matrix of order n. Let $A = U\binom{D_s}{0}V$ 72
- be the Smith normal form decomposition with U, V unimodular and D_s diagonal of order s. 73
- Consider the matrix 74

$$B = \begin{pmatrix} D_s & 0 & -I_s & 0 \\ 0 & I_{r-s} & 0 & 0 \\ I_s - D_s & 0 & I_s & 0 \\ 0 & 0 & 0 & I_{n-r-s} \end{pmatrix} \in M_n(\mathbb{Z}),$$

- where the zero blocks are of appropriate sizes and a matrix with zero column or row number does 75
- not appear. By adding the third block row to the first block row we see that B is unimodular. Thus 76

$$\operatorname{diag}(U, I_{n-r}) B \operatorname{diag}(V, I_{n-s})$$

- is unimodular and has A as a submatrix. 77
- If r + s > n, let k = r + s n. Suppose A has at least k invariant factors equal to 1. Then A 78
- has the following Smith normal form decomposition: 79

$$A = U \begin{pmatrix} I_k & 0 \\ 0 & D_{n-r} \\ 0 & 0 \end{pmatrix} V$$

with U, V unimodular and D_{n-r} diagonal of order n-r. Consider the matrix 80

$$G = \begin{pmatrix} I_k & 0 & 0 & 0 \\ 0 & D_{n-r} & 0 & -I_{n-r} \\ 0 & 0 & I_{r-s} & 0 \\ 0 & I_{n-r} - D_{n-r} & 0 & I_{n-r} \end{pmatrix} \in M_n(\mathbb{Z}).$$

3

4

87

88

89

90

101

102

103

104

105

106

107

X. Zhan / Linear Algebra and its Applications xxx (2005) xxx-xxx

- By adding the fourth block row to the second block row we see that G is unimodular. Thus $\operatorname{diag}(U, I_{n-r})G\operatorname{diag}(V, I_{n-s})$
- 82 is unimodular and has A as a submatrix. This completes the proof. \Box
- Proof of Theorem 2. We use induction on the order n. The case n = 2 is easily checked to be true. We assume that the assertion holds for matrices of order n 1 and prove the result for matrices of order $n \ge 3$. There are two cases.
- Case (i). There are n-1 prescribed positions in one row or column.
 - We consider the row case. The column case is similar. By row or column permutations if necessary, without loss of generality we may assume that $(i_t, j_t) = (1, t), t = 2, ..., n$. Then apart from row and column permutations there are essentially the following two situations.
 - Subcase i(1). $(i_1, j_1) = (2, 1)$. The matrix

$$\begin{pmatrix} a_1 a_2 + 1 & a_2 & a_3 & \cdots & a_n \\ a_1 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

- 91 is unimodular and has the prescribed entries in the prescribed positions.
- Subcase i(2). $(i_1, j_1) = (2, 2)$. We choose any n-2 prime numbers p_1, \ldots, p_{n-2} each of which is greater than $\max_{1 \le j \le n} |a_j|$. Let

$$B = \begin{pmatrix} a_2 & a_3 & \cdots & a_n \\ a_1 & p_1 & \cdots & p_{n-2} \end{pmatrix}.$$

Then $s_1(B) = d_1(B) = 1$. By Theorem 1, the $2 \times (n-1)$ matrix B can be completed to a unimodular matrix of order n. So there exist column vectors α , β and matrix F such that

$$\begin{pmatrix} \alpha & B \\ \beta & F \end{pmatrix} \in M_n(\mathbb{Z})$$

- 96 is a unimodular matrix, which satisfies the requirement.
- Case (ii). Every row or column of a matrix of order n contains at most n-2 prescribed positions.
- There is at least one column, say, the last column which contains at most one prescribed position. We distinguish the following two cases.
 - Subcase ii(1). The last column has no prescribed positions.
 - If the last row has at least one prescribed position, then there are at most n-1 prescribed positions (i_t, j_t) with $i_t \le n-1$ and $j_t \le n-1$. No row or column of a matrix of order n-1 is fully prescribed by the general assumption of Case (ii). Thus by the induction hypothesis there exists a unimodular matrix A' of order n-1 with the prescribed entries a_t in the positions (i_t, j_t) for all (i_t, j_t) with $i_t \le n-1$ and $j_t \le n-1$. Let β be the (n-1)-dimensional row vector whose j_t th component is equal to a_t for those $i_t = n$ and whose other entries are zero. Then the matrix $\begin{pmatrix} A' & 0 \\ \beta & 1 \end{pmatrix}$ is unimodular and satisfies the requirement.
- 108 (β 1) is difficulties the requirement of the last row has no prescribed positions, then by the induction hypothesis these exists a 110 unimodular matrix $H' = (h_{ij})$ of order n-1 with the n-1 prescribed entries a_t in the positions 111 (i_t , j_t), respectively, for $t = 1, \ldots, n-1$. Note that the position (i_n , j_n) is also in H'. Let γ be
- the (n-1)-dimensional column vector with the i_n th component equal to $a_n h_{i_n,j_n}$ and with other components equal to zero. Now consider the matrix

5

113

$$H = \begin{pmatrix} H' & \gamma \\ 0 & 1 \end{pmatrix} \in M_n(\mathbb{Z}).$$

- Let G be the matrix obtained from H by adding the last column to the j_n th column. Then G is unimodular and has the entries a_t in the positions (i_t, j_t) for $t = 1, \dots, n$. 115
- Subcase ii(2). The last column has exactly one prescribed position. 116
- By row permutations if necessary, we may assume that $(i_n, j_n) = (n, n)$. Then there are at most 117
- n-1 prescribed positions (i_t, j_t) with $i_t \le n-1$ and $j_t \le n-1$. By the induction hypothesis 118
- there is a unimodular matrix Q of order n-1 with a_t in (i_t, j_t) for all t satisfying $i_t \le n-1$ and 119
- $j_t \le n-1$. There is at least one position (k,n) which is not prescribed. We will show that there 120
- exist an (n-1)-dimensional row vector β and an (n-1)-dimensional column vector γ such that 121
- 122 the matrix

$$W = \begin{pmatrix} Q & \gamma \\ \beta & a_n \end{pmatrix} \in M_n(\mathbb{Z})$$

- is unimodular and has the prescribed entries in the prescribed positions. For the latter property we 123
- need only set $\beta(j_t) = a_t$ if $i_t = n$ and $1 \le j_t \le n 1$, set $\beta(k) = x$ to be chosen, and set other 124
- components of β to be zero. By Schur complement we have det $W = (\det Q)(a_n \beta Q^{-1}\gamma)$. So 125
- to make W unimodular it suffices to require $a_n \beta Q^{-1} \gamma = 1$. We first show that we can choose 126
- x such that the components of βQ^{-1} are relatively prime. Note that Q^{-1} is also unimodular and 127
- hence the components q_1, \ldots, q_{n-1} of the kth row of Q^{-1} are relatively prime. Let 128

$$\beta Q^{-1} = x(q_1, \dots, q_{n-1}) + (c_1, \dots, c_{n-1}).$$

- There are integers u_1, \ldots, u_{n-1} such that $\sum_{i=1}^{n-1} u_i q_i = 1$. Set $x = 1 \sum_{i=1}^{n-1} u_i c_i$. Then $\sum_{i=1}^{n-1} u_i (xq_i + c_i) = 1$. So the components of βQ^{-1} are relatively prime. Consequently there exists an 129
- 130
- integral column vector γ such that $\beta Q^{-1}\gamma = a_n 1$. Thus W is unimodular. This completes the 131
- 132
- **Proof of Corollary 3.** We can always prescribe one more position (i_n, j_n) such that the prescribed 133
- n positions do not constitute one row or one column, and prescribe 1 in (i_n, j_n) . Then apply 134
- 135 Theorem 2.

References 136

- [1] J.W.S. Cassels, Rational Quadratic Forms, Academic Press, London, 1978. 137
- 138 [2] J.A. Dias da Silva, Matrices with prescribed entries and characteristic polynomial, Proc. Amer. Math. Soc. 45 (1974) 139 31-37.
- 140 [3] D. Hershkowitz, Existence of matrices with prescribed eigenvalues and entries, Linear and Multilinear Algebra 14 (1983) 315-342. 141
- 142 [4] D. London, H. Minc, Eigenvalues of matrices with prescribed entries, Proc. Amer. Math. Soc. 34 (1972) 8–14.
- [5] H. Minc, Nonnegative Matrices, John Wiley & Sons, New York, 1988. 143
- 144 [6] L. Mirsky, Matrices with prescribed characteristic roots and diagonal elements, J. London Math. Soc. 33 (1958) 145
- [7] M. Newman, Integral Matrices, Academic Press, New York and London, 1972. 146
- [8] G.N. de Oliveira, Matrices with prescribed entries and eigenvalues, I, Proc. Amer. Math. Soc. 37 (1973) 380–386. 147
- [9] I. Zaballa, Existence of matrices with prescribed entries, Linear Algebra Appl. 73 (1986) 227–280. 148