Pairing Problem of Generators in Affine Kac-Moody Lie Algebras *

LI-MENG XIA1,2 LEI LIN1
1Department of Mathematics, East China Normal University
Shanghai, 200062, China
2Mathematics & Computer College of Hebei University
Baoding, 071002, China

Abstract

In this paper, we discuss the pair problem of generators in affine Kac-Moody Lie algebras. For any affine Kac-Moody algebra $g(A)$ of $X_l^{(k)}$ type and arbitrary nonzero imaginary root vector x, we prove that there exists some $y \in g(A)$, such that $g'(A)$ is contained in the Lie algebra generated by x and y.

Keywords Kac-Moody algebra, imaginary root vector, generator

2000 MR Subject Classification 17B67, 17B20

Chinese Library Classification O152.5

§ 0. Introduction

In the field of Lie algebras, it is a basic and interesting problem to discuss the minimal number of generators and describe the properties of the minimal set of generators. In [1], it is proved that any finite dimensional semisimple Lie algebra over a field F with Char$F = 0$ can be generated by two elements. In [2], this result is extended to general Lie algebra $g(A)$, where A is an arbitrary n–index complex matrix. Assume $\text{Rank}(A) = l$, then $g(A)$ can be generated by two elements if and only if $l \geq n - 2$. When a Lie algebra L can be generated by two elements, does there exist $y \in L$ such that L can be generated by x and y for a given x? In the case of finite dimension and complex field, it was proved in [3] in 1976 that:

For any given non-zero x in a simple Lie algebra L, one can find an element $y \in L$ such that x and y generate L.

Then how about L is infinite dimensional? In [5], several results for some special cases are given:

Let $g(A)$ be a Kac-Moody algebra. For any given h in a Cartan subalgebra, if h is not in the center and not any real root vector x_β, then there exists an element y, such that $g'(A)$ is contained in the Lie subalgebra generated by $\{h, y\}$ or $\{x_\beta, y\}$.

*Supported by the National Natural Science Foundation of the China, the Doctoral Programme Foundation of the Ministry of Education of China and the Shanghai Priority Academic Discipline.
In [6], it is proved that:

If A is a general Cartan matrix of type $X^{(1)}_l$, where $X = A, B, C$ or D, then for any imaginary root vector x, there exists $y \in g(A)$, such that $g'(A)$ is contained in the Lie subalgebra generated by $\{x, y\}$. But we can’t draw a good conclusion for general affine type using the methods in [6].

In this paper, we find a new method, with which we extend the results above to general affine Lie algebras.

§ 1. Main Lemmas

In order to get our result, we need the following two lemmas:

Lemma 1.1. Assume that L is a complex simple Lie algebra of finite type, then for any non-zero element h in a Cartan subalgebra H, there exists a prime root system Π, such that for arbitrary $\alpha_j, \alpha_k \in \Pi$, if

$$\alpha_j(h) + \alpha_k(h) = 0,$$

then

$$\alpha_j(h) = \alpha_k(h) = 0.$$

Proof: Assume H_R is the \mathbb{R}-type real space of H, that is:

$$H \cong \mathbb{C} \otimes_R H_R, \quad H_R \subseteq H,$$

then h has a unique decomposition:

$$h = h_1 + ih_2, h_1, h_2 \in H_R,$$

where $i = \sqrt{-1}$. Hence there exists a prime root system Π', such that $\alpha_j(h_1) \geq 0$ for any $\alpha_j \in \Pi'$.

Set

$$\Pi'_1 = \{\alpha_j \mid \alpha_j(h_1) > 0\},$$

$$\Pi'_2 = \{\alpha_j \mid \alpha_j(h_1) = 0\},$$

$$W_2 = \langle r_j \mid \alpha_j \in \Pi'_2 \rangle,$$

then for arbitrary $w \in W_2$, $\alpha \in \Pi'_1$, $w(\alpha)(h_1) > 0$. Meanwhile, W_2 is the Weyl group of L_2 generated by $\{e_i, f_i \mid \alpha_i \in \Pi'_2\}$. Assume H_2 is the \mathbb{R}-type real space of the Cartan subalgebra of L_2, then

$$(H_2)^* = \bigoplus_{\alpha_i \in \Pi'_2} \mathbb{R} \alpha_i.$$ (1.5)

Since the Cartan matrix of Π'_2 is positive definite and its rank is finite, so the map:

$$f : H_2 \to ((H_2)^*)^*$$

$$f(h)(\alpha) = \alpha(h)$$

is bijective. In fact h_2 defines a function ρ over $(H_2)^*$

$$\rho : \rho(\alpha) = \alpha(h_2),$$
so there must be a unique $h' \in H_2$ such that $\alpha(h_2 - h') = 0$ for any $\alpha \in (H_2)^*$. By the properties of semisimple Lie algebras we know that there exists $w \in W_2$ such that h' is in the fundamental Weyl chamber determined by $w(\Pi'_2)$, that is, $w(\alpha)(h') \geq 0$ for all elements in Π'_2, hence

$$w(\alpha)(h_2) \geq 0, \forall \alpha \in \Pi'_2.$$

Let $\Pi = w(\Pi')$, for all $w(\alpha_j), w(\alpha_k) \in \Pi$, if $w(\alpha_j)(h) + w(\alpha_k)(h) = 0$, then

$$w(\alpha_j)(h_1) + w(\alpha_k)(h_1) = 0,$$

$$w(\alpha_j)(h_2) + w(\alpha_k)(h_2) = 0,$$

from (1.6), $\alpha_j, \alpha_k \in \Pi'_2$, and from (1.7), we have $w(\alpha_j)(h) = w(\alpha_k)(h) = 0$, so Π is the prime root system which is we need.

Lemma 1.2. Assume that $\{s_1, \cdots, s_m\}$ is a set of complex numbers, such that for all (i, j),

$$s_i + s_j = 0 \text{ if and only if } s_i = s_j = 0,$$

matrix B is defined as:

$$B = \begin{bmatrix}
1 & s_1 \cdots s_1 & s_1 \cdots s_1 & \cdots & s_1 \cdots s_1 \\
-1 & s_2 \cdots s_2 & s_2 \cdots s_2 & \cdots & s_2 \cdots s_2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
(-1)^{k+1} & s_{k+1} \cdots s_{k+1} & s_{k+1} \cdots s_{k+1} & \cdots & s_{k+1} \cdots s_{k+1} \\
(-1)^{q+1} & s_{q+1} \cdots s_{q+1} & s_{q+1} \cdots s_{q+1} & \cdots & s_{q+1} \cdots s_{q+1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & s_m \cdots s_m & s_m \cdots s_m & \cdots & s_m \cdots s_m
\end{bmatrix},$$

where $p = 2q + 1$, $q = m(m - 1) + 1$. Then there exists a vector $v = (v_1, v_2, \cdots, v_q)$, such that $vB = (1, 0, 0, \cdots, 0)$.

Proof: We can directly suppose that

$$s_i \neq 0; s_i = s_j \text{ if and only if } i = j.$$

Let matrix $D = (d_{kl})_{q \times q}$, where $d_{kl} = \begin{pmatrix} k-1 \\ l-1 \end{pmatrix}$, $k, l = 1, \cdots, q$. then

$$DB = \begin{bmatrix}
1 & a_{1,2;1} \cdots a_{1,m;1} & a_{1,2;3,1} \cdots a_{m-1,m;1} \\
0 & a_{1,2;2} \cdots a_{1,m;2} & a_{1,2;3,2} \cdots a_{m-1,m;2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & a_{1,2;k} & a_{1,m;k} & a_{1,2;3,k} & a_{m-1,m;k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & a_{1,2;q} & a_{1,m;q} & a_{1,2;3;q} & a_{m-1,m;q}
\end{bmatrix},$$

where $a_{i,j;kl} = (s_i + s_j)^{k-1}(s_i p^{-k}s_j - s_j p^{-k}s_i)$. Because D is invertible, hence if the lemma holds for DB so does for B. Assume

$$B' = \begin{bmatrix}
1 & a'_{1,2;1} \cdots a'_{1,m;1} & a'_{1,2;3,1} \cdots a'_{m-1,m;1} \\
0 & a'_{1,2;2} \cdots a'_{1,m;2} & a'_{1,2;3,2} \cdots a'_{m-1,m;2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & a'_{1,2;k} & a'_{1,m;k} & a'_{1,2;3,k} & a'_{m-1,m;k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & a'_{1,2;q} & a'_{1,m;q} & a'_{1,2;3;q} & a'_{m-1,m;q}
\end{bmatrix},$$
where $a'_{i,j;k} = (s_i + s_j)^{k-1}s_i^{p-k}s_j$, $a''_{i,j;k} = -(s_i + s_j)^{k-1}s_j^{p-k}s_i$. Obviously if there is a vector $v = (v_1, v_2, \ldots, v_q)$ such that

$$vB' = (1, 0, 0, \cdots, 0)_q,$$

then

$$vDB = (1, 0, 0, \cdots, 0).$$

Denote by

$$B' = (\gamma_0, \gamma_1, \cdots, \gamma_{q-1}).$$

If the rank of $(\gamma_1, \cdots, \gamma_{q-1})$ equals R, without losing generality, we can suppose that

$$\text{Rank}(\gamma_1, \cdots, \gamma_R) = R.$$

Denote by $B'' = (\gamma_0, \gamma_1, \cdots, \gamma_R)$. If the lemma is true for B'', it must be true for B'. So it is true for B. B'' is a matrix of the following form

$$\begin{bmatrix}
1 & z_1 & \cdots & z_R \\
0 & z_1\lambda_1 & \cdots & z_R\lambda_R \\
\vdots & \vdots & \ddots & \vdots \\
0 & z_1\lambda_{q-1} & \cdots & z_R\lambda_{q-1}
\end{bmatrix},$$

and all z_i, λ_j are not 0. With $R < q$ and the properties of Vandermonde determinant, it is easy to know that there exists an element v such that $vB'' = (1, 0, 0, \cdots, 0)$, so the lemma is true.

§ 2. Proof of non-twisted case

Assume g is a finite dimensional complex simple Lie algebra of type X_{li}, then there is a realization of affine Kac-Moody algebra $g(A)$ of type $X_{li}^{(1)}$:

$$L(g) = C[t, t^{-1}] \otimes g + Cc + Cd. \quad (2.1)$$

Now $g'(A) = [L(g), L(g)] = C[t, t^{-1}] \otimes g + Cc$. Hence if $x \in L(g)$ is an imagine root vector, then $x = t^k \otimes h$, where k is a non-zero integer, h is a non-zero element in H, the Cartan subalgebra of g. From lemma 1, we can choose a good prime root system Π, such that for all $\alpha, \beta \in \Pi$,

$$\alpha(h) + \beta(h) = 0 \Leftrightarrow \alpha(h) = \beta(h) = 0.$$

Suppose $k > 0$, let

$$y = t^{-nk} \otimes \left(\sum_{i=1}^l a_i e_i \right) + \left(\sum_{i=1}^l f_i \right) + t \otimes h',$$

where $\{e_i, f_i \mid i = 1, \cdots, l\}$ is the Chevalley generator set of g, $h_i := [e_i, f_i]$, $h' \in H$, and for any i one has $\alpha_i(h') \neq 0$, from the properties of semisimple Lie algebras we know the existence of such an h'. Non-zero complex coefficient a_i is to be determined. Assume $n = 2l(l-1) + 3$, $q = l(l-1) + 1$, then $n = 2q + 1$.

Note $y_j := (\text{ad}x)^j(y), j = 1, \ldots, n$, from (1.4) one has

$$y_j = \sum_{i=1}^{l} (a_i (\text{ad}x)^j(t^{-nk} \otimes e_i) + (\text{ad}x)^j(f_i)) + (\text{ad}x)^j(t \otimes h')$$

$$= \sum_{i=1}^{l} (a_i t^{jk-nk} \otimes (\text{ad}h)^j(e_i) + t^{jk} \otimes (\text{ad}h)^j(f_i))$$

$$= t^{jk-nk} \otimes \left(\sum_{i=1}^{l} \alpha_i (h)^j a_i e_i \right) + t^{jk} \otimes \left(\sum_{i=1}^{l} (\alpha_i(h))^{j} f_i \right),$$

then denote

$$Y_j := [y_j, y_{n-j}], \quad j = 1, \ldots, q.$$

Now we have

$$Y_j = \left[t^{jk-nk} \otimes \left(\sum_{i=1}^{l} \alpha_i (h)^j a_i e_i \right), t^{-jk} \otimes \left(\sum_{i=1}^{l} \alpha_i (h)^{n-j} a_i e_i \right) \right]$$

$$+ \left[t^{jk-nk} \otimes \left(\sum_{i=1}^{l} \alpha_i (h)^j a_i e_i \right), t^{jk} \otimes \left(\sum_{i=1}^{l} (\alpha_i(h))^{n-j} f_i \right) \right]$$

$$+ \left[t^{jk} \otimes \left(\sum_{i=1}^{l} (\alpha_i(h))^{j} f_i \right), t^{-jk} \otimes \left(\sum_{i=1}^{l} \alpha_i (h)^{n-j} a_i e_i \right) \right]$$

$$+ \left[t^{jk} \otimes \left(\sum_{i=1}^{l} (\alpha_i(h))^{j} f_i \right), t^{jk-nk} \otimes \left(\sum_{i=1}^{l} (\alpha_i(h))^{n-j} f_i \right) \right]$$

$$= \left(\sum_{1 \leq i < r \leq l} a_i a_r (\alpha_i(h)^j \alpha_r(h)^{n-j} - \alpha_i(h)^{n-j} \alpha_r(h)^j) t^{-nk} \otimes [e_i, e_r] \right)$$

$$+ \left(\sum_{i=1}^{l} \alpha_i(h)^n(-1)^{n-j} h_i \right) + \lambda_j c - \left(\sum_{i=1}^{l} \alpha_i(h)^n(-1)^j h_i \right)$$

$$+ \left(\sum_{1 \leq i < r \leq l} (-1)^n(\alpha_i(h)^j \alpha_r(h)^{n-j} - \alpha_i(h)^{n-j} \alpha_r(h)^j) t^{nk} \otimes [f_i, f_r] \right),$$

where λ_j is some complex number correspond with j. And because n is an odd integer, so

$$Y_j = \left(\sum_{i=1}^{l} 2(-1)^{j+1} \alpha_i(h)^n h_i \right) + \lambda_j c$$

$$+ \sum_{1 \leq i < r \leq l} (\alpha_i(h)^j \alpha_r(h)^{n-j} - \alpha_i(h)^{n-j} \alpha_r(h)^j)(a_i a_r t^{-nk} \otimes [e_i, e_r] - t^{nk} \otimes [f_i, f_r]).$$

Let

$$\lambda = 2 \sum_{i=1}^{l} \alpha_i(h)^n h_i,$$

$$M_{i,r,j} = \alpha_i(h)^j \alpha_r(h)^{n-j} - \alpha_i(h)^{n-j} \alpha_r(h)^j,$$

$$E_{i,r} = a_i a_r t^{-nk} \otimes [e_i, e_r] - t^{nk} \otimes [f_i, f_r],$$

then

$$Y_j = (-1)^{j+1} \lambda + \lambda_j c + \sum_{1 \leq i < r \leq l} M_{i,r,j} E_{i,r}.$$
From lemma 2, there exists a vector \((v_1, \cdots, v_q)\), such that
\[
\lambda = \sum_{j=1}^{q} v_j(Y_j - \lambda c),
\]
hence
\[
\lambda' := \lambda + \sum_{j=1}^{q} v_j \lambda c \in L(x, y).
\]
Note \(St_1 := \{i \mid \alpha_i(h) \neq 0\}\), and denote the Lie subalgebra generated by \((e_i, f_i) \mid i \in St_1\) by \(g(St_1)\), then \(g(St_1)\) a semisimple subalgebra of \(g\), and \(\lambda \in H \cap g(St_1)\), it is easy to know there exists non-zero complex numbers \(\{a_i \neq 0 \mid i \in St_1\}\) such that \(\alpha_i(\lambda) > 0\) \((i \in St_1)\) and every \(a_i\) is not equal to any else, so \(\alpha_i(\lambda') > 0(i \in St_1)\) and they are pairwise different. Determine these \(a_i\)'s, then one can compose \(t^{k-nk} \otimes e_i\) and \(t^k \otimes f_i\) linearly by
\[
(ad\lambda')^m(y_1), \ (m = 1, \cdots, 2|St_1|),
\]
where \(i\) runs through \(St_1\). And then we can get
\[
t^{qk-nk} \otimes e_i, t^qk \otimes f_i \in L(x, y), \ \forall q \in \mathbb{N},
\]
by the action of \(x\). In particular, \(h_i + kc = [t^{-k} \otimes e_i, t^k \otimes f_i]\), and \(h_i + 2kc = [t^{-2k} \otimes e_i, t^{2k} \otimes f_i]\) are both in \(L(x, y)\), so \(h_i, c \in L(x, y)\).

If \(St_1 \neq \{1, \cdots, l\}\), set \(x_1 := t^k \otimes h^*\), where
\[
h^* = \sum_{i \in St_1} m_i h_i, \ \ m_i > 0,
\]
and there exists \(i_0 \notin St_1, \ \alpha_{i_0}(h^*) \neq 0\), then
\[
[x_1, y] = t^{k-nk} \otimes \left(\sum_{i=1}^{1} \alpha_i(h^*) a_i e_i \right) + t^k \otimes \left(\sum_{i=1}^{1} (-\alpha_i(h^*)) f_i \right).
\]
But for any \(i \in St_1\), one has \(t^{k-nk} \otimes e_i \in L(x, y), t^k \otimes f_i \in L(x, y)\). Let \(St_2 := \{i \notin St_1 \mid \alpha_i(h^*) < 0\}\), if there is some \(i_0 \notin St_1 \cup St_2\), then \(\alpha_{i_0}(h^*) = 0\), so
\[
t^{k-nk} \otimes \left(\sum_{i \in St_2} \alpha_i(h^*) a_i e_i \right) + t^k \otimes \left(\sum_{i \in St_2} (-\alpha_i(h^*)) f_i \right) \in L(x, y),
\]
set
\[
y'_1 = t^{k-nk} \otimes \left(\sum_{i \in St_2} \alpha_i(h^*) a_i e_i \right) + t^k \otimes \left(\sum_{i \in St_2} (-\alpha_i(h^*)) f_i \right),
\]
define \(y'_{j+1} = [x_1, y'_j], \ j = 1, \cdots, n - 1, \) and \(Y'_j = [y'_j, y'_{j-1}], \ j = 1, \cdots, q\). In the same way one can determine each \(a_i, \ (i \in St_2)\), this follows
\[
h_i \in L(x, y), \ \forall i \in St_2.
\]
Repeat this process, since \(\Pi\) is finite, after finite times (denoted by \(m\)), one can get
\[
\bigcup_{r=1}^{m} St_r = \{1, \cdots, l\},
\]
so for any $i \in \{1, \cdots, l\}$, $h_i \in L(x, y)$, and then $f_i, t^{-nk} \otimes e_i, t \otimes h' \in L(x, y)$, for any i. Hence

$$(\alpha_i(h'))^{nk}e_i = (\text{ad} t \otimes h')^{nk}(t^{-nk} \otimes e_i) \in L(x, y).$$

Because $(\alpha_i(h'))^{nk} \neq 0$, we have $e_i \in L(x, y), \forall i \in \{1, \cdots, l\}$, Thus

$$g = \langle e_i, f_i \mid i = 1, \cdots, l \rangle, \forall g, t \otimes g = \langle g, t \otimes h' \rangle \subseteq L(x, y).$$

and from $t^{-nk} \otimes e_i \in L(x, y)$, we have

$$t^{-nk} \otimes g \subseteq \langle g, t^{-nk} \otimes e_i \rangle \subseteq L(x, y).$$

So $t^{-1} \otimes g \subseteq \langle t \otimes g, t^{-nk} \otimes g \rangle \subseteq L(x, y)$, and

$$g'(A) \subseteq \langle t \otimes g, t^{-1} \otimes g \rangle \subseteq L(x, y).$$

(2.2)

When $k < 0$, the same conclusion can be obtained with similar method. So we have

Theorem 2.1. For any non-twisted affine Kac-Moody Lie algebra $g(A)$ and its arbitrary imaginary root vector x, there exists an element $y \in g(A)$ such that $g'(A)$ is contained in the subalgebra generated by $\{x, y\}$.

§ 3. CASE OF TWISTED NUMBER EQUALS TO 2

Recall the realization of affine Lie algebra of type $X_l^{(2)}$:

$$\mathbb{C}[t^2, t^{-2}] \otimes g_0 + t\mathbb{C}[t^2, t^{-2}] \otimes g_1 + \mathbb{C}c + Cd,$$

(3.1)

where $g_0 + g_1 = g$ is a finite dimensional complex simple Lie algebra of type X_l, g_0 is a simple subalgebra of g, and g_1 is a simple g_0-module. Now

$$g'(A) = \mathbb{C}[t^2, t^{-2}] \otimes g_0 + t\mathbb{C}[t^2, t^{-2}] \otimes g_1 + \mathbb{C}c.$$

If $x = t^{2k} \otimes h$ is a root vector, then h lies in the Cartan subalgebra of g_0. If g_0 is of type Y_l, it is easy to prove that

$$L = \mathbb{C}[t^2, t^{-2}] \otimes g_0 + Cc + Cd$$

is an affine Lie algebra of type $Y_l^{(1)}$, and $x \in L$. From theorem 2.1, there is $y' \in L$ that $L^{(1)} \subseteq L(x, y')$. Let

$$y = y' + t \otimes h',$$

where $h' \in H \cap g_1, h' \neq 0$. Because x is commutative with $t \otimes h'$, and by the proof above, we know

$$L^{(1)} \subseteq \sum_{j \geq 2} V^j,$$

where

$$V = \mathbb{C}x + C y' = V^1, \forall j \geq 2, V^j = \sum_{r+s=j} [V^r, V^s],$$

so for any $j \geq 2$, $V^j \subseteq L(x, y)$, hence $L^{(1)} \subseteq L(x, y)$, thus

$$t \otimes h' = y - y' \in L(x, y).$$
Since \(g_1 \) is a simple \(g_0 \)-module, then
\[
t^{-1} \otimes g_1 \subseteq \langle t \otimes h', t^{-2} \otimes g_0 \rangle,
\]
so
\[
g'(A) \subseteq \langle t^{-1} \otimes g_1, L^{(1)} \rangle \subseteq L(x, y). \tag{3.2}
\]

If \(x = t^{2k-1} \otimes h \), then \(h \) is in \(g_1 \cap H \), obviously the action of \((ad h)^2\) on \(g_0 \) is diagonal, so there is \(h_{\mu} \in g_0 \cap H \), so that \((ad h_{\mu} - (ad h)^2)(g_0) = 0\). In particular, one can let
\[
x_1 = t^{4k-2} \otimes h_{\mu},
\]
then
\[
[x_1, b] - [x, [x, b]] \in \mathbf{C}c,
\]
for all \(b \in L \), so there is an element \(y \in L \) satisfies \(L^{(1)} \subseteq L(x_1, y) \). Meanwhile,
\[
L^{(1)} \subseteq \sum_{j \geq 2} V^j,
\]
where
\[
V = Cx + Cy = V^1, V^j = \sum_{r+s \geq j} [V^r, V^s], \forall j \geq 2,
\]
and \(c \in L^{(1)} \), so \(L^{(1)} \subseteq L(x, y) \). Because \(x \in L(x, y) \), hence
\[
t^{2k-1} \otimes g_1 \subseteq \langle g, x \rangle \subseteq L(x, y),
\]
thus
\[
g'(A) \subseteq \langle L^{(1)}, t^{2k-1} \otimes g_1 \rangle \subseteq L(x, y). \tag{3.3}
\]

From (2.2) and (3.1) one can get

Theorem 3.1. For any affine Kac-Moody Lie algebra \(g(A) \) with twisted number \(k = 2 \) and its arbitrary imaginary root vector \(x \), there exists an element \(y \in g(A) \) such that \(g'(A) \) is contained in the subalgebra generated by \(\{x, y\} \).

§ 4. CASE OF TWISTED NUMBER EQUALS TO 3

If \(g(A) \) is an affine Lie algebra with twisted number 3, then it is only of type \(D_4^{(3)} \), it has a realization:
\[
\left(\sum_{i \in \mathbf{Z}} t^{3i} \otimes g_0 \right) + \left(\sum_{i \in \mathbf{Z}} t^{3i+1} \otimes g_1 \right) + \left(\sum_{i \in \mathbf{Z}} t^{3i-1} \otimes g_2 \right) + \mathbf{Cc} + \mathbf{Cd} \tag{4.1}
\]
where \(g_0 + g_1 + g_2 \) is a simple complex Lie algebra of type \(D_4 \), and \(g_0 \) is a simple subalgebra of type \(G_2 \) of \(g(A) \), \(g_1 \) and \(g_2 \) are isomorphic simple \(g_0 \)-modules. Similarly
\[
G = \left(\sum_{i \in \mathbf{Z}} t^{3i} \otimes g_0 \right) + \mathbf{Cc} + \mathbf{Cd},
\]
is a non-twisted affine Kac-Moody algebra and it is of type \(G_2^{(1)} \). Now
\[
g'(A) = \left(\sum_{i \in \mathbf{Z}} t^{3i} \otimes g_0 \right) + \left(\sum_{i \in \mathbf{Z}} t^{3i+1} \otimes g_1 \right) + \left(\sum_{i \in \mathbf{Z}} t^{3i-1} \otimes g_2 \right) + \mathbf{Cc}.
\]
If \(x \in G \), then there exists \(y' \in G \) such that \(G^{(1)} \subseteq L(x, y') \). Let \(h' \in g_1 \cap H \), and \(y = y' + t \otimes h' \). Since \(x \) and \(t \otimes h' \) are commutative, \(G^{(1)} \subseteq L(x, y) \). Hence \(t \otimes h' \in L(x, y) \). But \(g_1 \) is a simple \(g_0 \)-module, one has
\[
t^{3i+1} \otimes g_1 \subseteq L(x, y), \forall i \in \mathbb{Z},
\]
and then
\[
0 \neq [t^{3i-2} \otimes g_1, t \otimes g_1] \subseteq t^{3i-1} \otimes g_2.
\]
Since \(g_2 \) is also a simple \(g_0 \)-module, thus
\[
t^{3i-1} \otimes g_2 \subseteq L(x, y), \forall i \in \mathbb{Z}.
\]
Finally, we get
\[
g'(A) \subseteq L(x, y).
\]

If \(x = t^{3i+1} \otimes h \) for some \(i \), then \(h \in g_1 \cap H \). At first, we discuss the case \(i \geq 0 \). Because the Cartan subalgebra of \(g \) is 4-dimensional, the Cartan subalgebra of \(g_0 \) is 2-dimensional, and \(g_1 \) is isomorphic to \(g_2 \) as \(g_0 \)-modules, thus \(\dim(H \cap g_1) = 1 \). Assume \(\omega = e^{2\pi i/3} \), the Chevalley generators of \(g \) are
\[
\{e_i, f_i \mid i = 1, 2, 3, 4\},
\]
\[
h_i = [e_i, f_i], \quad i = 1, 2, 3, 4,
\]
and \(e_1, e_3, e_4 \) are pairwise commutative. Then we have \(h = K(h_1 + \omega h_3 + \omega^2 h_4) \), and we can suppose \(K = 1 \). Let
\[
y = e_2 + f_2 + t^{-9(3i+1)} \otimes (e_1 + e_3 + e_4) + (f_1 + f_3 + f_4) + t \otimes h,
\]
set \(y_j := (\text{ad}x)^j(y) \), then
\[
y_3 = 8t^{-6(3i+1)} \otimes (e_1 + e_3 + e_4) - t^{3(3i+1)} \otimes (f_1 + f_3 + f_4),
\]
\[
y_6 = 64t^{-3(3i+1)} \otimes (e_1 + e_3 + e_4) + t^6(3i+1) \otimes (f_1 + f_3 + f_4),
\]
\[
[y_3, y_6] = 72(h_1 + h_2 + h_3 + K' c) \subseteq L(x, y).
\]
So \(\lambda = h_1 + h_2 + h_3 + K' c \in L(x, y) \). Set
\[
y^j := (\text{ad}\lambda)^j(y),
\]
then all \(e_2, f_2, t^{-9(3i+1)} \otimes (e_1 + e_3 + e_4), (f_1 + f_3 + f_4) \) can be represented linearly by \(y^1, y^2, y^3 \) and \(y^4 \):
\[
\frac{1}{90} (12y^1 - 4y^2 - 3y^3 + y^4) = e_2,
\]
\[
-\frac{1}{90} (12y^1 + 4y^2 - 3y^3 - y^4) = f_2,
\]
\[
\frac{1}{40} (18y^1 + 9y^2 - 2y^3 - y^4) = t^{-9(3i+1)} \otimes (e_1 + e_3 + e_4),
\]
\[
-\frac{1}{40} (18y^1 - 4y^2 - 2y^3 + y^4) = f_1 + f_3 + f_4,
\]
that is, they all lie in \(L(x, y) \), thus \(t \otimes h \) also lies in \(L(x, y) \). And
\[
(\text{ad}x)^9(t^{-9(3i+1)} \otimes (e_1 + e_3 + e_4)) = 2^9(e_1 + e_3 + e_4),
\]
(\text{ad}(t \otimes h))^{9(3i+1)-1}(t^{-9(3i+1)} \otimes (e_1 + e_3 + e_4)) = 2^{9(3i+1)-1}t^{-1} \otimes (e_1 + \omega^2 e_3 + \omega e_4),

so

\begin{align*}
g_0 &= \langle e_1 + e_3 + e_4, f_1 + f_3 + f_4, e_2, f_2 \rangle \subseteq L(x, y), \\
t \otimes h &\in t \otimes g_1 \cap L(x, y) \neq 0, \\
t^{-1} \otimes (e_1 + \omega^2 e_3 + \omega e_4) &\in (t^{-1} \otimes g_2) \cap L(x, y) \neq 0,
\end{align*}

and then

\begin{align*}
t \otimes g_1, t^{-1} \otimes g_2 &\subseteq L(x, y).
\end{align*}

hence

\begin{align*}
g'(A) &\subseteq (g_0, t \otimes g_1, t^{-1} \otimes g_2) \subseteq L(x, y). \quad (4.2)
\end{align*}

When \(i < 0 \), we have the same conclusion. If \(x = t^{3i-1} \otimes h \), then \(h \in g_2 \), and the proof is similar as above. So we can get

Theorem 4.1. For an affine Kac-Moody Lie algebra \(g(A) \) with twisted number \(k = 3 \) and its arbitrary imaginary root vector \(x \), there exists an element \(y \in g(A) \) such that \(g'(A) \) is contained in the subalgebra generated by \(\{ x, y \} \).

Now combine theorem 2.1, 3.1 and 4.1, we get

Theorem 4.2 For any affine Kac-Moody Lie algebra \(g(A) \) and its arbitrary imaginary root vector \(x \), there exists an element \(y \in g(A) \) such that \(g'(A) \) is contained in the subalgebra generated by \(\{ x, y \} \).

REFERENCES

